3,152 research outputs found
A High Speed Hardware Scheduler for 1000-port Optical Packet Switches to Enable Scalable Data Centers
Meeting the exponential increase in the global demand for bandwidth has become a major concern for today's data centers. The scalability of any data center is defined by the maximum capacity and port count of the switching devices it employs, limited by total pin bandwidth on current electronic switch ASICs. Optical switches can provide higher capacity and port counts, and hence, can be used to transform data center scalability. We have recently demonstrated a 1000-port star-coupler based wavelength division multiplexed (WDM) and time division multiplexed (TDM) optical switch architecture offering a bandwidth of 32 Tbit/s with the use of fast wavelength-tunable transmitters and high-sensitivity coherent receivers. However, the major challenge in deploying such an optical switch to replace current electronic switches lies in designing and implementing a scalable scheduler capable of operating on packet timescales. In this paper, we present a pipelined and highly parallel electronic scheduler that configures the high-radix (1000-port) optical packet switch. The scheduler can process requests from 1000 nodes and allocate timeslots across 320 wavelength channels and 4000 wavelength-tunable transceivers within a time constraint of 1μs. Using the Opencell NanGate 45nm standard cell library, we show that the complete 1000-port parallel scheduler algorithm occupies a circuit area of 52.7mm2, 4-8x smaller than that of a high-performance switch ASIC, with a clock period of less than 8ns, enabling 138 scheduling iterations to be performed in 1μs. The performance of the scheduling algorithm is evaluated in comparison to maximal matching from graph theory and conventional software-based wavelength allocation heuristics. The parallel hardware scheduler is shown to achieve similar matching performance and network throughput while being orders of magnitude faster
Message-Passing Methods for Complex Contagions
Message-passing methods provide a powerful approach for calculating the
expected size of cascades either on random networks (e.g., drawn from a
configuration-model ensemble or its generalizations) asymptotically as the
number of nodes becomes infinite or on specific finite-size networks. We
review the message-passing approach and show how to derive it for
configuration-model networks using the methods of (Dhar et al., 1997) and
(Gleeson, 2008). Using this approach, we explain for such networks how to
determine an analytical expression for a "cascade condition", which determines
whether a global cascade will occur. We extend this approach to the
message-passing methods for specific finite-size networks (Shrestha and Moore,
2014; Lokhov et al., 2015), and we derive a generalized cascade condition.
Throughout this chapter, we illustrate these ideas using the Watts threshold
model.Comment: 14 pages, 3 figure
‘Question Moments’: A Rolling Programme of Question Opportunities in Classroom Science
This article has been made available through the Brunel Open Access Publishing Fund.This naturalistic study integrates specific 'question moments' into lesson plans to
increase pupils' classroom interactions. A range of teaching tools has explored
students' ideas through opportunities to ask and write questions. Their oral and written
outcomes provide data on individual and group misunderstandings. Changes to the
schedule of lessons were introduced to discuss these questions and solve disparities.
Flexible lesson planning over fourteen lessons across a four-week period of highschool
chemistry accommodated students' contributions and increased student
participation, promoted inquiring and individualised teaching, with each teaching
strategy feeding forward into the next
Riparian zones increase regional species richness by harboring different, not more, species
Riparian zones are habitats of critical conservation concern worldwide, as they are known to filter agricultural contaminants, buffer landscapes against erosion, and provide habitat for high numbers of species. Here we test the generality of the notion that riparian habitats harbor more species than adjacent upland habitats. Using previously published data collected from seven continents and including taxa ranging from Antarctic soil invertebrates to tropical rain forest lianas and primates, we show that riparian habitats do not harbor higher numbers of species, but rather support significantly different species pools altogether. In this way, riparian habitats increase regional (γ-) richness across the globe by >50%, on average. Thus conservation planners can easily increase the number of species protected in a regional portfolio by simply including a river within terrestrial biodiversity reserves. Our analysis also suggests numerous possible improvements for future studies of species richness gradients across riparian and upland habitats. First, <15% of the studies in our analysis included estimates of more than one taxonomic group of interest. Second, within a given taxonomic group, studies employed variable methodologies and sampling areas in pursuit of richness and turnover estimates. Future analyses of species richness patterns in watersheds should aim to include a more comprehensive suite of taxonomic groups and should measure richness at multiple spatial scales
Timing interactions in social simulations: The voter model
The recent availability of huge high resolution datasets on human activities
has revealed the heavy-tailed nature of the interevent time distributions. In
social simulations of interacting agents the standard approach has been to use
Poisson processes to update the state of the agents, which gives rise to very
homogeneous activity patterns with a well defined characteristic interevent
time. As a paradigmatic opinion model we investigate the voter model and review
the standard update rules and propose two new update rules which are able to
account for heterogeneous activity patterns. For the new update rules each node
gets updated with a probability that depends on the time since the last event
of the node, where an event can be an update attempt (exogenous update) or a
change of state (endogenous update). We find that both update rules can give
rise to power law interevent time distributions, although the endogenous one
more robustly. Apart from that for the exogenous update rule and the standard
update rules the voter model does not reach consensus in the infinite size
limit, while for the endogenous update there exist a coarsening process that
drives the system toward consensus configurations.Comment: Book Chapter, 23 pages, 9 figures, 5 table
Volume-Targeted Ventilation and Arterial Carbon Dioxide in Neonates
Objectives: To review the arterial carbon dioxide tensions (PaCO2) in newborn infants ventilated using synchronized intermittent mandatory ventilation (SIMV) in volume guarantee mode (using the Drager Babylog 8000+) with a unit policy targeting tidal volumes of approximately 4 mL/kg. Methods: Data on ventilator settings and arterial (PaCO2 levels were collected on all arterial blood gases (ABG; n = 288) from 50 neonates ( 65 mmHg) were determined. Results: The mean (SD) (PaCO2 during the first 48 h was 46.6 (9.0) mmHg. The mean (SD) (PaCO2 on the first blood gas of those infants commenced on volume guarantee from admission was 45.1 (12.5) mmHg. Severe hypo- or hypercapnoea occurred in 8% of infants at the time of their first blood gas measurement, and i
Neural development features: Spatio-temporal development of the Caenorhabditis elegans neuronal network
The nematode Caenorhabditis elegans, with information on neural connectivity,
three-dimensional position and cell linage provides a unique system for
understanding the development of neural networks. Although C. elegans has been
widely studied in the past, we present the first statistical study from a
developmental perspective, with findings that raise interesting suggestions on
the establishment of long-distance connections and network hubs. Here, we
analyze the neuro-development for temporal and spatial features, using birth
times of neurons and their three-dimensional positions. Comparisons of growth
in C. elegans with random spatial network growth highlight two findings
relevant to neural network development. First, most neurons which are linked by
long-distance connections are born around the same time and early on,
suggesting the possibility of early contact or interaction between connected
neurons during development. Second, early-born neurons are more highly
connected (tendency to form hubs) than later born neurons. This indicates that
the longer time frame available to them might underlie high connectivity. Both
outcomes are not observed for random connection formation. The study finds that
around one-third of electrically coupled long-range connections are late
forming, raising the question of what mechanisms are involved in ensuring their
accuracy, particularly in light of the extremely invariant connectivity
observed in C. elegans. In conclusion, the sequence of neural network
development highlights the possibility of early contact or interaction in
securing long-distance and high-degree connectivity
Structural efficiency of percolation landscapes in flow networks
Complex networks characterized by global transport processes rely on the
presence of directed paths from input to output nodes and edges, which organize
in characteristic linked components. The analysis of such network-spanning
structures in the framework of percolation theory, and in particular the key
role of edge interfaces bridging the communication between core and periphery,
allow us to shed light on the structural properties of real and theoretical
flow networks, and to define criteria and quantities to characterize their
efficiency at the interplay between structure and functionality. In particular,
it is possible to assess that an optimal flow network should look like a "hairy
ball", so to minimize bottleneck effects and the sensitivity to failures.
Moreover, the thorough analysis of two real networks, the Internet
customer-provider set of relationships at the autonomous system level and the
nervous system of the worm Caenorhabditis elegans --that have been shaped by
very different dynamics and in very different time-scales--, reveals that
whereas biological evolution has selected a structure close to the optimal
layout, market competition does not necessarily tend toward the most customer
efficient architecture.Comment: 8 pages, 5 figure
Recommended from our members
Output from VIP cells of the mammalian central clock regulates daily physiological rhythms
The suprachiasmatic nucleus (SCN) circadian clock is critical for optimising daily cycles in mammalian physiology and behaviour. The roles of the various SCN cell types in communicating timing information to downstream physiological systems remain incompletely understood, however. In particular, while vasoactive intestinal polypeptide (VIP) signalling is essential for SCN function and whole animal circadian rhythmicity, the specific contributions of VIP cell output to physiological control remains uncertain. Here we reveal a key role for SCN VIP cells in central clock output. Using multielectrode recording and optogenetic manipulations, we show that VIP neurons provide coordinated daily waves of GABAergic input to target cells across the paraventricular hypothalamus and ventral thalamus, supressing their activity during the mid to late day. Using chemogenetic manipulation, we further demonstrate specific roles for this circuitry in the daily control of heart rate and corticosterone secretion, collectively establishing SCN VIP cells as influential regulators of physiological timing
Effectiveness of bisphosphonates on nonvertebral and hip fractures in the first year of therapy: The risedronate and alendronate (REAL) cohort study
INTRODUCTION: Randomized clinical trials have shown that risedronate and alendronate reduce fractures among women with osteoporosis. The aim of this observational study was to observe, in clinical practice, the incidence of hip and nonvertebral fractures among women in the year following initiation of once-a-week dosing of either risedronate or alendronate. METHODS: Using records of health service utilization from July 2002 through September 2004, we created two cohorts: women (ages 65 and over) receiving risedronate (n = 12,215) or alendronate (n = 21,615). Cox proportional hazard modeling was used to compare the annual incidence of nonvertebral fractures and of hip fractures between cohorts, adjusting for potential differences in risk factors for fractures. RESULTS: There were 507 nonvertebral fractures and 109 hip fractures. Through one year of therapy, the incidence of nonvertebral fractures in the risedronate cohort (2.0%) was 18% lower (95% CI 2% – 32%) than in the alendronate cohort (2.3%). The incidence of hip fractures in the risedronate cohort (0.4%) was 43% lower (95% CI 13% – 63%) than in the alendronate cohort (0.6%). These results were consistent across a number of sensitivity analyses. CONCLUSION: Patients receiving risedronate have lower rates of hip and nonvertebral fractures during their first year of therapy than patients receiving alendronate
- …