28 research outputs found
Comparison of the novel ResPlex III assay and existing techniques for the detection and subtyping of influenza virus during the influenza season 2006–2007
Influenza virus is a major cause of disease worldwide. The accurate detection and further subtyping of influenza A viruses are important for epidemiologic surveillance, and subsequent comprehensive characterization of circulating influenza viruses is essential for the selection of an optimal vaccine composition. ResPlex III is a new multiplex reverse transcriptase polymerase chain reaction (RT-PCR)-based method for detecting, typing, and subtyping influenza virus in clinical specimens. The ResPlex III assay was compared with other methods with respect to sensitivity and accuracy, using 450 clinical specimens obtained from subjects throughout Germany during the 2006–2007 influenza season. Samples were analyzed for the presence of influenza virus in Madin-Darby canine kidney (MDCK) cells by rapid cell culture using peroxidase staining and conventional cell culture confirmed by hemagglutination inhibition assay, a rapid diagnostic assay (Directigen Flu A+B test; BD Diagnostic Systems, Heidelberg, Germany), in-house real-time RT-PCR (RRT-PCR), and ResPlex III (Qiagen, Hilden, Germany). ResPlex III had the highest sensitivity for detecting influenza virus in clinical specimens, followed by in-house RRT-PCR (96% compared with ResPlex III). Conventional cell culture in MDCK cells, rapid culture, and quick test assays were substantially less sensitive (55%, 72%, and 39%, respectively). Virus subtyping results were identical using ResPlex III and the standard virological subtyping method, hemagglutination inhibition. ResPlex III is a quick, accurate, and sensitive assay for detecting and typing influenza A and B viruses and subtyping influenza A viruses in clinical specimens, and might be considered for a supplemental role in worldwide seasonal and pandemic influenza surveillance
Recommended from our members
Multiple viral infections in Agaricus bisporus - characterisation of 18 unique RNA viruses and 8 ORFans identified by deep sequencing
Thirty unique non-host RNAs were sequenced in the cultivated fungus, Agaricus bisporus, comprising 18 viruses each encoding an RdRp domain with an additional 8 ORFans (non-host RNAs with no similarity to known sequences). Two viruses were multipartite with component RNAs showing correlative abundances and common 3′ motifs. The viruses, all positive sense single-stranded, were classified into diverse orders/families. Multiple infections of Agaricus may represent a diverse, dynamic and interactive viral ecosystem with sequence variability ranging over 2 orders of magnitude and evidence of recombination, horizontal gene transfer and variable fragment numbers. Large numbers of viral RNAs were detected in multiple Agaricus samples; up to 24 in samples symptomatic for disease and 8–17 in asymptomatic samples, suggesting adaptive strategies for co-existence. The viral composition of growing cultures was dynamic, with evidence of gains and losses depending on the environment and included new hypothetical viruses when compared with the current transcriptome and EST databases. As the non-cellular transmission of mycoviruses is rare, the founding infections may be ancient, preserved in wild Agaricus populations, which act as reservoirs for subsequent cell-to-cell infection when host populations are expanded massively through fungiculture
The immunopathology of canine vector-borne diseases
The canine vector-borne infectious diseases (CVBDs) are an emerging problem in veterinary medicine and the zoonotic potential of many of these agents is a significant consideration for human health. The successful diagnosis, treatment and prevention of these infections is dependent upon firm understanding of the underlying immunopathology of the diseases in which there are unique tripartite interactions between the microorganism, the vector and the host immune system. Although significant advances have been made in the areas of molecular speciation and the epidemiology of these infections and their vectors, basic knowledge of the pathology and immunology of the diseases has lagged behind. This review summarizes recent studies of the pathology and host immune response in the major CVBDs (leishmaniosis, babesiosis, ehrlichiosis, hepatozoonosis, anaplasmosis, bartonellosis and borreliosis). The ultimate application of such immunological investigation is the development of effective vaccines. The current commercially available vaccines for canine leishmaniosis, babesiosis and borreliosis are reviewed
Cutaneous lesions of the nose
Skin diseases on the nose are seen in a variety of medical disciplines. Dermatologists, otorhinolaryngologists, general practitioners and general plastic and dermatologic surgeons are regularly consulted regarding cutaneous lesions on the nose. This article is the second part of a review series dealing with cutaneous lesions on the head and face, which are frequently seen in daily practice by a dermatologic surgeon. In this review, we focus on those skin diseases on the nose where surgery or laser therapy is considered a possible treatment option or that can be surgically evaluated
Isolation of respiratory syncytial virus from nasopharyngeal aspirates stored at 20ÂşC from one to fifteen months after collection
Cell culture isolation is used for recovering respiratory syncytial virus (RSV) from respiratory specimens. As RSV is a thermolabile virus, specimens destined for inoculation into cell culture require special transport, handling, and storage. The isolation rate of RSV from nasopharyngeal aspirates (NPA) stored at 20ÂşC for one to 15 months after collection was investigated. A total of 126 samples considered positive for RSV by indirect fluorescence-antibody were tested by virus isolation in HEp-2 cell culture. RSV was isolated from 47/126 specimens (37.3%). These results show that RSV may be recovered from NPA stored at 20ÂşC by cell culture