60 research outputs found

    Investigation of the mechanism of chromium removal in (3-aminopropyl)trimethoxysilane functionalized mesoporous silica

    Get PDF
    We are proposed that a possible mechanism for Cr(VI) removal by functionalized mesoporous silica. Mesoporous silica was functionalized with (3-aminopropyl)trimethoxysilane (APTMS) using the post-synthesis grafting method. The synthesized materials were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), N-2 adsorption-desorption analysis, Fourier-transform infrared (FT-IR), thermogravimetric analyses (TGA), and X-ray photoelectron spectroscopy (XPS) to confirm the pore structure and functionalization of amine groups, and were subsequently used as adsorbents for the removal of Cr(VI) from aqueous solution. As the concentration of APTMS increases from 0.01 M to 0.25 M, the surface area of mesoporous silica decreases from 857.9 m(2)/g to 402.6 m(2)/g. In contrast, Cr(VI) uptake increases from 36.95 mg/g to 83.50 mg/g. This indicates that the enhanced Cr(VI) removal was primarily due to the activity of functional groups. It is thought that the optimum concentration of APTMS for functionalization is approximately 0.05 M. According to XPS data, NH3+ and protonated NH2 from APTMS adsorbed anionic Cr(VI) by electrostatic interaction and changed the solution pH. Equilibrium data are well fitted by Temkin and Sips isotherms. This research shows promising results for the application of amino functionalized mesoporous silica as an adsorbent to removal Cr(VI) from aqueous solution

    Mesoporous silica nanoparticles with tunable pore size for tailored gold nanoparticles

    Get PDF
    The aim of this paper was to verify a possible correlation between the pore-size of meso- porous silica nanoparticles (MSNs) and the sizes of gold nanoparticles (AuNPs) obtained by an impreg- nation of gold(III) chloride hydrate solution in the MSNs, followed by a specific thermal treatment. Mesoporous silica nanoparticles with tunable pore diameter were synthesized via a surfactant-assisted method. Tetraethoxysilane as silica precursor, cetyl- trimethylammonium bromide (CTAB) as surfactant and toluene as swelling agent were used. By varying the CTAB–toluene molar ratio, the average dimension of the pores could be tuned from 2.8 to 5.5 nm. Successively, thiol groups were grafted on the surface of the MSNs. Finally, the thermal evolution of the gold salt, followed by ‘‘in situ’’ X-ray powder diffraction (XRPD) and thermogravimetric analysis (TGA), revealed an evident correlation among the degradation of the thiol groups, the pore dimension of the MSNs and the size of the AuNPs. The samples were characterized by means of nitrogen adsorption– desorption, transmission electron microscopy, small- angle X-ray scattering, XRPD ‘‘in situ’’ by synchro- tron radiation, and ‘‘ex situ’’ by conventional tech- niques, diffuse reflectance infrared Fourier transform spectroscopy, and TGA

    Recent progress in mesoporous titania materials: adjusting morphology for innovative applications

    No full text
    [[abstract]]This review article summarizes recent developments in mesoporous titania materials, particularly in the fields of morphology control and applications. We first briefly introduce the history of mesoporous titania materials and then review several synthesis approaches. Currently, mesoporous titania nanoparticles (MTNs) have attracted much attention in various fields, such as medicine, catalysis, separation and optics. Compared with bulk mesoporous titania materials, which are above a micrometer in size, nanometer-sized MTNs have additional properties, such as fast mass transport, strong adhesion to substrates and good dispersion in solution. However, it has generally been known that the successful synthesis of MTNs is very difficult owing to the rapid hydrolysis of titanium-containing precursors and the crystallization of titania upon thermal treatment. Finally, we review four emerging fields including photocatalysis, photovoltaic devices, sensing and biomedical applications of mesoporous titania materials. Because of its high surface area, controlled porous structure, suitable morphology and semiconducting behavior, mesoporous titania is expected to be used in innovative applications

    In vitro evaluation of folic acid-conjugated redox-responsive mesoporous silica nanoparticles for the delivery of cisplatin

    No full text
    Merlis P Alvarez-Berríos,1 Juan L Vivero-Escoto2,3 1Department of Science and Technology, Inter American University of Puerto Rico, Ponce, Puerto Rico, 2Department of Chemistry, 3Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, USA Abstract: The use of cisplatin(IV) prodrugs for the delivery of cisplatin have gained significant attention, because of their low toxicity and reactivity. Recent studies have shown that targeted cisplatin(IV)-prodrug nanoparticle-based delivery systems can improve the internalization of the cisplatin(IV) prodrug. We hypothesized that folic acid-conjugated mesoporous silica nanoparticles (MSNs) containing cisplatin(IV) prodrug could target cancer cells that overexpress the folate receptor and deliver the active cisplatin drug upon intracellular reduction. To prove this hypothesis, internalization and localization studies in HeLa cancer cells were performed using flow cytometry and confocal microscopy. The ability of MSNs to escape from the endolysosomal compartments, the formation of DNA adducts, and the cytotoxic effects of the MSNs were also evaluated. Our results confirmed that this MSN-based delivery platform was capable of delivering cisplatin into the cytosol of HeLa cells, inducing DNA adducts and subsequent cell death. Keywords: cancer treatment, cisplatin prodrug, intracellular delivery, folic acid, mesoporous silic
    corecore