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Abstract The aim of this paper was to verify a

possible correlation between the pore-size of meso-

porous silica nanoparticles (MSNs) and the sizes of

gold nanoparticles (AuNPs) obtained by an impreg-

nation of gold(III) chloride hydrate solution in the

MSNs, followed by a specific thermal treatment.

Mesoporous silica nanoparticles with tunable pore

diameter were synthesized via a surfactant-assisted

method. Tetraethoxysilane as silica precursor, cetyl-

trimethylammonium bromide (CTAB) as surfactant

and toluene as swelling agent were used. By varying

the CTAB–toluene molar ratio, the average dimension

of the pores could be tuned from 2.8 to 5.5 nm.

Successively, thiol groups were grafted on the surface

of the MSNs. Finally, the thermal evolution of the gold

salt, followed by ‘‘in situ’’ X-ray powder diffraction

(XRPD) and thermogravimetric analysis (TGA),

revealed an evident correlation among the degradation

of the thiol groups, the pore dimension of the MSNs

and the size of the AuNPs. The samples were

characterized by means of nitrogen adsorption–

desorption, transmission electron microscopy, small-

angle X-ray scattering, XRPD ‘‘in situ’’ by synchro-

tron radiation, and ‘‘ex situ’’ by conventional tech-

niques, diffuse reflectance infrared Fourier transform

spectroscopy, and TGA.
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Introduction

Silicon dioxide, especially in its amorphous form and

with a nanometric scale is generating increasing

interest due to its potential application as an absorbent,

catalyst support and its use in biomedicine (de Dios

et al. 2010; He et al. 2011a; Zong et al. 2011). It is

characterized by excellent thermal and mechanical

stability, good biocompatibility, and can be prepared

by relatively simple synthetic procedures that allow

adequate control over morphology and particle size

(Lee et al. 2009; Hoshikawa et al. 2010; Lai et al.

2003). Mesoporous silica nanoparticles (MSNs) are

among the most used inorganic support materials due

to their large surface area and pore volume. These

properties are very useful for hosting nanoparticles
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(NPs), such as therapeutic drugs and phosphors. The

principal synthetic route for these nanomaterials is the

mild and facile sol–gel method. Further, the in situ

assembly of cetyltrimethylammonium bromide

(CTAB) micellar structures in the reaction medium

can allow for the synthesis of silica structures

containing interconnected open pores. This encasing

around these micelles by the growing silica network is

the method exploited for the syntheses of the well-

known MCM-type materials (Kresge et al. 1992; Beck

et al. 1992; Schumacher et al. 2000; Kim et al. 2010;

Huang et al. 2010; Biz et al. 1998). Other types of

nano-shaped mesoporous materials have been pro-

duced and include SBA-, MSU-, FSM-, FDU-, BMS-,

and KIT-type, with morphology and pore structure

being dependant on the synthetic conditions employed

(Fan et al. 2003; Zhou et al. 1998; Trewyn et al. 2007;

Schulz-Ekloff et al. 1999). They are characterized by

a long-range order of their pores yet are mainly

produced in the micrometer range (Lindlar et al.

2001). When the dimensions of the particles are

reduced below the micron size, an increasing difficulty

for pore size tuning and control over the particle

morphology arises. Reported methods for the synthe-

sis of MSNs using different templating agents have led

to the formation of materials with pore dimensions of

4 nm or less (He et al. 2011b; Lin et al. 2009, 2010;

Asaro et al. 2010; Cauda et al. 2010a). Such particles

have attracted great interest in the biomedical field due

to their inherent capability to carry within their pores a

large amount of particles and ions (Enrichi et al. 2010;

Parma et al. 2010; Sivestrini et al. 2010). Hence, they

can be used as carriers in drug delivery acting (Huang

et al. 2011; Wu et al. 2011) or as stealth NPs when

properly functionalized (Park et al. 2010; Zhao et al.

2011; He et al. 2010). For such applications it may be

beneficial to utilize MSNs with larger pores, combined

with adequate control of the morphological shape and

dimensions (Nandiyanto et al. 2009). Many other

research groups have also studied the swelling prop-

erties of some aromatic compounds, including 1,3,5-

trimethylbenzene (TMB or mesitylene) (Fuertes et al.

2010; Galarneau et al. 2006; Lefèvre et al. 2005) or

1,3,5-triisopropylbenzene (Cao et al. 2010), or other

co-solvents, for example hexane (Maldonado et al.

2007; Kruk et al. 2007; Ma et al. 2011) or N,N-

dimethylhexadecylamine (DMHA) (Kruk et al. 2000),

to enlarge CTAB micelles within the medium. Nor-

mally attention is payed only to the control of the pore

enlargement of mesoporous materials, instead some

authors (Büchel et al. 1998) focus also their studies to

adjust the shape and size of NPs dispersed inside the

MSNs. Recent decades have witnessed a tremendous

interest for gold nanoparticles (AuNPs) due to their

size-related properties (quantum size effect), and their

wide applicability which ranges from catalysis to

biology and medicine allowing, for example, heat

from infrared lasers to be targeted on cancer tumors

(Cai et al. 2008). The literature on this subjects is very

large so, for this reason, we indicate only some

reviews (Stratakis et al. 2012; Corma et al. 2008; Cai

et al. 2008; Saha et al. 2012; Upadhyayula 2012). It is

also well known the importance of the size of both free

and supported AuNPs. Many articles discuss the role

of the particle size in controlling the chemical,

physical, and catalytic properties and their interaction

with biological systems when the gold metal cluster

measure few nanometer (Zhou et al. 2010; Scaffardi

et al. 2006; Yah 2013; Cuenya 2010; Pan et al. 2007;

Fenger et al. 2012; Storaro et al. 2010; Marquez et al.

2013). Preparation methods such as deposition, pre-

cipitation, co-precipitation, and impregnation have not

been effective routes for supporting AuNPs on silica.

The difficulty to obtain highly dispersed gold nano-

particles on silica by using these methods arises from

the fact that the point of zero charge (PZC) for silica

surfaces is close to pH 2. This means that the silica

surface becomes negatively charged above pH 2,

hindering the deposition of anionic gold species such

as AuCl4
-. For this reason, when these methods are

applied for gold deposition on silica, the average NPs

diameter becomes very large ([20 nm). Giersig and

Mulvaney, who showed the surface grafting of differ-

ent aliphatic silanes containing terminal thiol moieties

to bind gold species, first reported the stabilization of

AuNPs with alkanethiols in 1993 (Giersig et al. 1993).

To achieve this, a facile synthesis of thermally stable

and air-stable AuNPs of reduced and controlled size

by the use of thiols was described (Hasan et al. 2002).

Since the capacity for controlling NPs size is one of the

most important subjects of nanoscience in general, it is

necessary to make nanomaterials with specific prop-

erties. Hence, the use of the mesoporous silica

structure as a possible template agent for in situ

controlled metal particle synthesis can be considered a

useful and simple method for obtaining tailored

systems. Recently, Krawiec et al. described the pos-

sibility of exploiting toluene both as a swelling agent
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and a carrier of Pt precursor inside the micelles, in order

to obtain almost monodisperse metal nanoparticles

inside the pores via a one step procedure (Krawiec et al.

2006). Furthermore, developments in the design of

surface-functionalized MSNs have revealed the prom-

ising potential of utilizing these structurally ordered

materials for therapeutic drug and/or gene delivery

(Vivero-Escoto et al. 2009). MSNs offer a highly

promising platform for intracellular controlled release

of drugs and biomolecules. Our aim was to obtain silica

nanoparticles with a spherical morphology (50–100 nm

in diameter)-containing AuNPs within the pores, which

are able to penetrate inside human cells and to

investigate a possible correlation among the pore-size

of the mesoporous silica structure and the final AuNPs

grown within the silica pores (Jankiewicz et al. 2012;

Choma et al. 2011, 2012). As results from the previous

discussion it is evident that there is a general interest in

controlling the size of the gold particles. For example

the nanocomposites, developed in this study, could

show good stability with respect to the sintering of the

gold nanoparticles in catalytic processes, since the gold

clusters are blocked inside the open pores of the MSNs.

However, the present nanocomposites could be con-

sidered as a new type of material for in vivo imaging

and therapy of cancer. The size of the gold particles

used in such applications are usually above 20 nm to

get a high optical activity but they cannot be easily

cleared by the kidneys and therefore they are accumu-

lated in the body. The similar optical properties could

be obtained by aggregate of very closed small particles.

In this case the resulting released gold NPs could be

small enough to be cleared by the kidneys. In addition

the studied MSNs, are also biodegradable and, with

controlled size and shape (Bergman et al. 2013; Park

et al. 2009; Cauda et al. 2010b). For this aim, a

systematic study on the use of toluene as a swelling

agent and its effect on pore size by varying its quantity

have been carried out. A successive impregnation of

gold salt followed by a specific thermal treatment has

been considered to elucidate any possible influence of

the mesoporous structure on the final nanostructure of

the metal particles. Highly ordered mesoporous silica

particles with sizes in the micron to sub-micron range

(micron-ordered mesoporous silica particles) are of

great interest due to their application as catalysts and

filler materials. Alternatively, MSNs offer a highly

promising platform for intracellular controlled release

of drugs and biomolecules.

The study was systematically carried out as

follows: (a) bare MSNs with increasing pore-size

were prepared and characterized, (b) the bare MSNs

were functionalized with a thiol-terminated silane

(c) the functionalized MSNs were impregnated with

gold(III) chloride hydrate solution (d) the evolution of

the metal nanoparticles with increasing temperatures

were monitored by in situ XRD measurements (d) ex

situ suitable thermal treatments of the samples were

performed to verify a possible correlation among pore

size and AuNPs nanostructures.

Experimental

Materials

Tetraethoxysilane (TEOS, Aldrich 98 %), ethanol

(EtOH, Carlo Erba 99.8 %), ammonium hydroxide

(NH3, Fluka 28 wt%), toluene (Fluka 99 %), n-octane

(Fluka 95 %), 1-octadecene (Aldrich 90 %), cetyltri-

methylammonium bromide (CTAB, Aldrich),

(3-mercaptopropyl)trimethoxysilane (MPTS, Aldrich

95 %), propylamine (Aldrich 99 %), cyclohexane

(Fluka 99 %), n-hexane (Carlo Erba 95 %) and

gold(III) chloride hydrate (HAuCl4, Aldrich 99.9 %).

Reagents were all used as received.

Synthesis of the MSNs

The synthesis of mesoporous silica nanoparticles was

adapted from the procedure by Qiao et al. (2009).

Deionized water (145.2 mL, 8.07 mol), EtOH

(22.8 mL, 0.39 mol), and CTAB powder (5.73 g,

15.72 mmol) were stirred at 60 �C. Following the

complete dissolution of CTAB, as indicated by the

transparency of the solution, 1.25 mL (18.08 mmol)

of a ammonia solution were added into the mixture

under continued stirring and heating. After 30 min,

TEOS (14.6 mL, 64.56 mmol) was added dropwise.

Stirring at 60 �C was continued for 2 h, during which

the clear solution gradually turned into a white

suspension. The suspension was cooled to room

temperature and the solid product was recovered and

repeatedly washed (initially in deionized water and

finally in EtOH) with five cycles of centrifugation

(30 min at 9 krpm). The dried product was finally

calcined in air for 6 h at 550 �C in order to remove the
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organic template. All samples details and labels are

reported in Table 1.

AuNPs growth into silica network

Thiol-functionalization was made before impregnat-

ing silica with gold salt solution. Adaptation of the

method performed by Chen et al. for surface grafting

of functionalized silane was used (Chen et al. 1982).

Similarly to the literature, the mercaptopropyl-func-

tionalised MSNs was prepared using a cyclohexane

(5 mL) solution-containing 2 %v/v MPTS and 2 %v/v

n-propylamine. Thiol-functionalized MSNs (100 mg)

was placed in a round-bottom flask equipped with

magnetic stirrer. Ethanol and 25 mM HAuCl4 solution

were added to the powder, in order to introduce

approximately 8 wt% of gold in the materials, while

stirring under nitrogen. After 30 min the solvent was

removed under reduced pressure (10-1 mbar) by

gentle heating in a water bath (60 �C).

Characterization

The nitrogen adsorption–desorption isotherms were

measured at liquid nitrogen temperature (-196 �C)

using a Micromeritics ASAP 2010 volumetric adsorp-

tion analyzer. The Brunauer–Emmett–Teller (BET)

equation was used to calculate the specific surface area

from adsorption data and the pore-size distributions

were calculated from the adsorption branches of the

isotherms based on the Barrett–Joyner–Halenda (BJH)

model. The dimensions and the morphologies of the

nanoparticles were studied by transmission electron

microscopy (TEM) using a JEOL JEM 3010 operating

at 300 kV. The energy dispersive X-ray spectroscopy

(EDS) were collected with JEOL JSM-5600LV scan-

ning electron microscope (SEM). The IR spectra were

recorded with a NEXUS-FT-IR instrument implement-

ing a Nicolet AVATAR Diffuse Reflectance accessory.

The thermogravimetric analyses were performed in air

from 30 to 900 �C with a heating rate of 20 �C/min with

a Netzsch STA 409. The diffraction patterns were

recorded with a small-angle X-ray scattering (SAXS)

Kratky camera (Cu Ka1 = 0.154 nm) equipped with a

proportional detector for intensity collection. The

sample was held in a 1-mm thick sample holder at room

temperature. Data were acquired as a function of the

scattering vector modulus h ¼ ð4p sin hÞ=k where 2h is

the angle between the incident and scattered beams.

The SAXS curves were obtained by step scanning in

the range from 0.01 to 0.4 Å-1. The temperature wide-

angle X-ray scattering (WAXS) measurements were

collected at the ELETTRA Laboratories of Sincrot-

rone Trieste S.C.p.A (Line MCX) using a quartz glass

capillary as sample holder (Riello et al. 2013). A Phi-

lips X’Pert vertical goniometer with Bragg–Brentano

geometry, connected to a highly stabilized generator,

was used for all the other X-ray powder diffraction

(XRPD) measurements; a focusing graphite mono-

chromator and a proportional counter with a pulse-

height discriminator were used, Nickel-filtered CuKa
radiation and a step-by-step technique were employed

(steps of 0.05� 2 h), with collection times of 10 s/step.

These latter patterns were used for the quantitative

analysis and size distributions of AuNPs using the

Rietveld method (Riello et al. 1998a).

Results and discussion

Pore-expanded MSNs

Hydrophobic solvents as toluene, n-octane and 1-oc-

tadecene were selected as suitable swelling agents.

Several samples having a different molar ratio

between the surfactant (C), and the swelling agent

(T) were synthesized. It was found that both 1-octa-

decene and n-octane were not suitable since they gave

rise to phase separation and to no noticeable increase

in the pore size. These data are reported in Fig. S1 in

supporting Information (SI). Instead, an homogenous

phase was observed in the toluene-containing system

for all the different molar ratios investigated. The

resulting mesoporous materials were characterized by

Table 1 Summary of sample properties and data derived from

nitrogen isotherms and TEM measurements

Sample C:T

molar

ratio

BET

surface

area

(m2/g)

BJH pore

diameter

(nm)

Total

pore

volume

(cm3/g)

TEM

average

particles

size (nm)

S 1:0 1,000 2.8 0.94 75

ST1 4:1 1,004 2.9 1.08 64

ST2 1:2 997 3.5 1.85 55

ST3 1:3 942 3.4 1.87 52

ST4 1:4 934 5.5 2.36 59

ST5 1:5 723 1.9 0.37
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the formation of pores with controlled size distribution

in a disorder structure. This evidence suggests that the

reaction conditions and molar ratio are suitable for the

synthesis of our mesoporous materials. Similar results

are present in the literature where some authors

(Lindén et al. 2000; Ottaviani et al. 2004; Poteshnova

et al. 2006; Wan et al. 2007; Firouzi et al. 1995; Biz

et al. 1998) report the detailed phase diagrams for

systems resembling the one we have studied, however

a specific phase diagram for the toluene system is not

reported. Looking at the molar ratio of the reagents

used in the cited literature and considering also that the

increasing of organic co-solvent results in a final

structure which is less ordered and less expanded, it is

possible to obtain some good starting values for our

system to accomplish micellar system apt to our final

goal. For all these reasons there should not be any

hindrances for this system to produce a final material

having all the characteristics necessary for our final

applications. On this basis, all the subsequent exper-

iments were performed using toluene as swelling

agent. The textural properties of the MSNs prepared

with the different CTAB:toluene (C:T) molar ratios

are listed in Table 1.

Thermogravimetric analysis (TGA) was carried out

to find the optimal post-synthesis thermal treatment so

that to maintain the reactive Si–OH groups on the

surface and to assure the complete removal of the

organic precursor which renders the MSNs unsuitable

for biological applications. In previous studies it was

found that a thermal treatment at 550 �C for 6 h was

sufficient to remove the surfactant molecules without

complete dehydroxylating the superficial –OH groups

and without collapsing the pore network (Parma et al.

2010). To check for the applicability of the procedure

a TGA was performed on sample ST4. Figure S2

shows that the majority of weight loss occurs before

reaching 400 �C. An initial loss of 5 % was due to the

removal of residual solvent. A second minimum at

250 �C, visible in the derivative of thermogravimetric

curve (DTG) was ascribed to the removal of the

organic fraction comprising CTAB which has a

melting point of 237 �C and decomposes at 243 �C.

The differences between the temperatures reported in

the TGA with the literature values, could be due to the

CTAB encapsulation in the pore which creates an

interaction between the surfactant molecules and the

internal surface of the MSNs. The combustion of

CTAB from within the pores requires higher energies

and temperatures than the ones needed for its bulk

decomposition. In the 250–550 �C temperature range

the combustion of unreacted ethoxy groups arising

from TEOS, the decomposition of residual organic

molecules and the condensation of neighboring silanol

groups occurred. Above 550 �C a further loss of

approximately 2 % was observed due to thermal

dehydroxylation of internal surface silanol groups to

form siloxane bridges.

To confirm the absence of the organic fraction and

the presence of superficial-free silanol groups, the

DRIFT-IR spectra of the ST4 sample as-prepared and

after calcination at 550 �C were compared (Fig. S3).

The broad absorption band arising from the vibrational

modes of the water was strongly reduced in the sample

annealed at 550 �C; in the proximity of this region the

appearance of a sharp peak at 3,746 cm-1 was attrib-

uted to the stretching of the superficial silanol groups.

The presence of these reactive superficial groups was

the most important objective of post-synthesis calcina-

tion together with the disappearance of the features

under 3,000 cm-1 and the peak at 1,480 cm-1 arising,

respectively, from the vibrational modes of aliphatic

groups and from the in plane bending of aliphatic

groups, which confirms the removal of the organic

fraction (Bae et al. 2006). The characteristic absorp-

tions of the silica were present in both spectra: in

particular the very strong bands between 1,400 and

1,000 cm-1 are ascribed to the symmetric stretching of

siloxanic groups (Badaničová et al. 2010). The pre-

sence of a stronger band of the absorbed water at

1,628 cm-1 in the treated sample can be attributed to

humidity adsorption from the atmosphere.

In order to study the swelling effect of the toluene,

nitrogen physisorption analyses were made for each

prepared sample. The N2 absorption–desorption hys-

teresis curves (Fig. 1) showed a progressive increase

in the volume of the adsorbed gas with the increasing

in toluene concentration, maintaining a type IV shape.

When the molar ratio C:T is 1:5, the curve assumed a

different profile, displaying a type I isotherm (Fig. 1).

This suggests a collapse of the micellar structure and

the observed porosity can be attributed to micropores.

It is likely that the micelles have swelled to the extent

to which they break; the porosity of the sample arises

from the presence of randomly distributed organic

fraction. The BET surface areas, the total pore volume

and the average pore diameters, evaluated by BJH

method (Fig. 2), are summarized in Table 1.
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The decrease of the CTAB–toluene molar ratio led

to a growth in the pore size and in the total pore

volume, until the aforementioned critical ratio 1:5 was

reached. It is worth noting that as the mean pore size

increases the distribution is broadened towards larger

diameters. The largest pore diameter was observed

with a toluene concentration four times higher than the

surfactant. In this sample (ST4) the surface area

maintains appreciable values, the mean pore size is

centered at around 5.5 nm, and the total pore volume is

Fig. 1 Adsorption–desorption curves of the samples S, ST1–5.

The curves are of type IV of the IUPAC classification of 1984,

except for the sample ST5 which shows a type I curve. The

volume of adsorbate increases monotonically with the increase

of the toluene content, and has an abrupt fall when the molar

ratio between CTAB and the aromatic solvent reaches 1:5
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quite high. The shift of the intermediate step in the

isotherms points out the growth of pore dimensions.

Furthermore, the isotherms flattening in samples with

lower C:T molar ratio highlights a polydispersion of

channel diameters. A further increase in the concen-

tration of the swelling agent, sample ST5, caused the

collapse of the template structure and led to micropo-

rosity, reduced surface area, and total pore volume.

A parallel study of the materials was carried out

using the SAXS technique. The low angle region of the

spectrum provides information on the arrangement

and morphology of the pores. The spectra of the

samples are reported in Fig. S4 where the peaks arising

from the interference due to the pore ordering can be

appreciated (Li et al. 2001). The shift toward lower h

values and the broadening of the peaks by increasing

the quantity of toluene was consistent with the

increase in the pore diameter and the broadening of

their distribution, so that the channels tended to be

arranged in a more random fashion.

Finally, the samples were examined by TEM

(Figs. 3, S5 in SI). The micrographs of Fig. 3 depict

an evident increase in the porosity in correspondence

to the decreasing C:T molar ratio from sample S to

sample ST4. All these samples showed a random

distribution of the pore channels. Mesoporous mate-

rials are rather disordered in presence of swelling

agent in agreement with the literature (Wan et al.

2007). The enlarging of the pores led to a reduction in

the thickness of the silica walls, which became

Fig. 2 Pore diameter distribution, calculated according to the

BJH approach, of the sample synthesized without the addition of

toluene (S) and for the samples prepared with decreasing

CTAB–toluene molar ratio (ST1–ST5)

Fig. 3 TEM images of the samples S, ST1–4, and particles size distributions
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increasingly thin in sample ST4. This trend was also

confirmed by the total amount of pore volume. By

comparing the morphologies of the samples there is a

tendency to form roundish particles with decreasing

C:T molar ratio, while the dimension of the particles

was relatively constant showing a 50–70-nm diameter

(see Table 1). The oscillations of the mean value can

be explained considering the irregular porous con-

tours. While samples S and ST1 showed a high degree

of agglomeration, the presence of higher quantities of

toluene clearly lowered the degree of agglomeration.

The diameter of every particle was measured twice,

along different directional axis in the pictures. It could

be appreciated a good and definite size distribution of

the particles for almost all samples. In Fig. S5, images

of sample ST5 were presented. In this sample neither a

regular shape nor a size distributions were identifiable.

The small pore channels were also difficult to detect.

Stabilization of AuNPs in MSNs

Samples S, ST3 and ST4, with three different sizes of

pore diameter (see Table 1), were used as templates for

internal growth of AuNPs. The pore size and the

superficial –OH groups of the selected silica, allowed

the surface functionalization by post grafting the

silanol group with (3-mercaptopropyl)trimethoxysi-

lane (MPTS). TGA of the Au-mercaptopropyl-MSN,

reported in Fig. 4, demonstrated that the different pore

size of the selected materials did not influence the

temperature of thiol groups degradation which

occurred at about 330 �C in all samples, in agreement

with literature (Dı́az et al. 2003).

High resolution TEM images in Fig. 5 of the as-

prepared Au-thiol-MSNs clearly show that the func-

tionalization of the silica surface give rise to a quite

narrow distribution of the size of the gold nanoparti-

cles anchored to the MSNs (Fig. 5a, d, g).

In order to follow the evolution of the metal

nanoparticles with increasing temperatures suitable

in situ WAXS measurements were collected with a

specially designed furnace at the materials character-

ization by X-ray diffraction beam line at Elettra

(Riello et al. 2013). The apparatus provides atmo-

sphere and temperature controlled environment for

powders contained in capillaries. The WAXS mea-

surements were collected from room temperature (RT)

to 500 �C.

In the spectra, reported in SI (Fig. S6), the intense

background from 0.3 to 0.8 Å-1 and the peak at

0.25 Å-1 were characteristic of both amorphous

silica (constituting the MSNs) and of the quartz

capillary used as sample holder. Even if in the samples

Au@S and Au@ST3 the presence of very weak peaks

was visible at 250 �C (especially in sample Au@ST3)

a fast growth of the gold peaks starts at 350 �C. In any

case, in these samples, the peaks characteristic of the

gold metallic phase were visible only after a suitable

thermal treatment. The absence of diffraction peaks in

XRPD spectra, up to 200 �C, for the Au@S and

Au@ST3 samples, can be explained assuming that, at

lower temperature, the visible particles by TEM

(Fig. 5a, d) were probably too small, very disordered

or not completely reduced to give a perceptible

diffraction peak. In fact, the presence of chlorine into

the structure of the as-prepared samples could not be

excluded as reported by the SEM–EDS analyses

(Fig. 6). The same figure shows that at 350 �C

Fig. 4 Thermogravimetric curves (a) and their derivates (b) of

sample S, ST3, and ST4 after functionalization with thiol groups

2245 Page 8 of 14 J Nanopart Res (2014) 16:2245

123



chlorine is no more detectable, as well as sulfur, as

expected by the TGA analysis.

On the contrary, XRPD profile of the sample

Au@ST4 shows gold crystalline peaks even before the

thermal treatment. As it can be seen by TEM of Fig.

S7, the XRPD peaks of Au@ST4 sample, at low

temperature, were due to the presence of some large

AuNPs outside the pore network. This happens even if

the silica has been functionalized due to the large pore-

size distribution of the host ST4 material; in fact, the

gold species can migrate to some extent also to the

external surface of the MSNs. In this sample it is

difficult to identify a well defined threshold temper-

ature for the sintering of the gold particles. In fact, at

200 �C there is an evident growth of the (200) peak

that can be explained with the coalescence of a large

amount of hidden particles, not detectable by XRPD at

lower temperatures, and with the reduction of the

disorder of the large particles out of the pores.

The analysis of the previous results seems to

support the idea that thiol groups, which were

mandatory for the impregnation of the silica with the

a

d

g h

e

b c

f

i

Fig. 5 High resolution TEM images of samples S, ST3, and

ST4 with AuNPs grown into their porous network before (a, d,

g) and after (b, e, h) thermal treatment at 350 �C with relative

particle-size distribution (white histogram before and black

histogram after) comparing with the pore distribution (dotted

curves) (c, f, i)
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gold precursor, are essential during the thermal

treatment because they allow the growing of AuNPs

inside the silica pore network. Consequently, the

observed fast growth of the gold particles at temper-

ature higher than 350 �C could be correlated with the

definitive total degradation of the thiols occurred

above this temperature. Only at higher temperatures,

the AuNPs size became larger than the pore size and

can be expelled from the mesoporous silica structure

growing in an uncontrolled way. In order to verify this

hypothesis, the samples Au@S, Au@ST3, and

Au@ST4 were treated at 350 �C for 4 h and analyzed

by TEM and ex situ XRPD patterns. The results are

reported in Table 2.

The high resolution TEM pictures (Fig. 5b, e, h)

and the histograms (Fig. 5c, f, i) show a comparison

between Au particle diameter distribution and pore-

size BJH distribution of the host materials. In order to

compare the size distribution of the AuNPs obtain by

TEM and the pore-size distribution obtain by BJH

method (see Fig. 2) its necessary take into account the

different definition of the two distributions. TEM

distribution N(D) dD is ‘‘numerical’’ one, i.e., is

proportional to the number of particles with diameter

D in the range ðD� Dþ dDÞ; while the distribution

V(D)dD obtained by BJH method is a ‘‘volumetric’’

one, i.e., is proportional to the volume of pores with

diameter in the range ðD� Dþ dDÞ: Assuming that

the average pore length L is independent of the pore

diameter the two distribution are related by the

equation:

VðDÞdD ¼ NðDÞ pD2

4
LdD: ð1Þ

In Fig. 5c, f, i, we compare the N(D) obtain by TEM

with V(D)/D2 obtain by BJH. Au particles sizes really

seem to depend on the microstructure of the MSNs and

are strictly related to the size of the silica pores. This is

an important evidence of the MSNs capacity to

stabilize the dimensional growth of nanomaterials.

As a matter of fact the movements of the particles are

more difficult in a smaller and restricted space than in

an opened one.

Moreover, Fig. 7 shows the XRPD patterns of the

samples treated at 350 �C. A quantitative analysis of

the gold content in all the samples was obtained by a

standard approach based on the Rietveld refinement of

the diffraction data (Riello et al. 1998a). The syn-

chrotron measurements were not suitable to this aim

since the silica contribution of MSNs cannot be

evidenced from the quartz glass of the sample holder.

The results, reported in Table 2, are very close to the

nominal loading of the sample (8 wt%) and they

confirm a correlation between the mesoporous silica

structure and the size of the metallic particles.

Diffraction peaks of the sample Au@ST4 are less

broadened than what is expected from the size of the

particles that result from the TEM but, as just

Fig. 6 EDS analysis on Au@MSNs before (gray histogram)

and after (black line) thermal treatment at 350 �C (the profile are

similar for Au@S, Au@ST3, and Au@ST4)

Table 2 Summary of AuNPs data derived from TEM and XRPD measurements

Sample BJH pore

diameter (nm)

TEM particles size

before treatment (nm)

TEM particles size

after treatment (nm)

XRPD particles size

after treatment (nm)

XRPD Au

fraction (wt%)

Au@S 2.8 1.7 ± 0.3 2.5 ± 0.4 2.0 8.3

Au@ST3 3.4 1.8 ± 0.3 3.2 ± 0.6 2.5 8.2

Au@ST4 5.5 2.0 ± 0.4 4.8 ± 1.1 5.3 7.9a

The standard deviation for XRPD particles size distribution is about 10 %
a The 42 % of the global loading is given by the particles inside the pores
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discussed, some larger particles were also present in

the sample before heat treatment (Fig. S7). However,

in order to obtain the total gold fraction (wt%),

reported in Table 2, it is necessary to consider two

groups of particles with very different sizes. This

procedure has been already successfully used for a

Pd/SiO2 and Au/C systems to evidence and to quantify

the presence of two populations of particles with a

large difference of size (Polizzi et al. 2001; Riello

et al. 1998b). Following this procedure two different

two peaks with very different half width were

necessary to properly describe the line profile (see

inset in Fig. 7). The results, relative to the particles

with smaller size and reported in Table 2, still confirm

the good correlation between the mesoporous structure

and the size of the AuNPs.

Conclusions

The main aim of the paper concerns the preparation of

carriers based on silica nanoparticles (MSNs) with a

controlled mesoporous structure, in order to develop

multi-use systems for different applications such as

adsorption, sensing, catalysis, separation, and nano-

medicine. A correlation among the average pore size

of the mesoporous silica nanoparticles and the final

growth of AuNPs within the silica pores has been

investigated. A simple method for the synthesis of

MSNs and their pore size tuning was presented.

Ordered MSNs, with different pore size were obtained

via a surfactant-assisted synthesis using CTAB and

toluene as micelle core-swelling agent. BET, SAXS,

and TEM analyses confirmed that the largest pores

were achieved with a CTAB:toluene molar ratio of

1:4. The thermal treatment, needed to remove the

template, produces superficial silanol groups, thus

allowing MSNs thiol functionalization. The growth of

the AuNPs starts when the temperature of the thermal

treatment of the HAuCl4 impregnated MSNs reaches

the degradation temperature of the thiol groups

(350 �C). The size of the AuNPs in this condition is

controlled by the pore diameter of the MSNs. A fast

growth of the gold particles outside the mesoporous

structure has been observed at higher temperatures. In

any case the presence of thiol groups was found to be

indispensable to allow the growth of AuNPs inside the

silica pore network. The possibility to control the size

and the amount of a single phase, with a specific

functionality, loaded into the mesoporous structure

can be an important step for further developments of

tailored nanosystems. In this case the gold particles are

stabilized by the pore networks that prevent the

agglomeration of the metallic nanoclusters without

any surface functionalization.
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