25 research outputs found

    Methodology of calculation of construction and hydrodynamic parameters of a foam layer apparatus for mass-transfer processes

    Get PDF
    Промислова реалізація методу стабілізації газорідинного шару дозволяє значно розширити галузь застосування пінних апаратів і відкриває нові можливості інтенсифікації технологічних процесів з одночасним створенням маловідходних технологій. У статті встановлені основні параметри, що впливають на гідродинаміку пінних апаратів, розглянуті основні конструкції та режими роботи пінних апаратів. Виявлено зв'язок гідродинамічних параметрів. Розглянуто гідродинамічні закономірності пінного шару. Вказані фактори, що впливають на процес масообміну, як в газовій, так і в рідкій фазах. Проведений аналіз ряду досліджень показав, що перспективним напрямком інтенсифікації процесу масообміну є розробка апаратів з трифазним псевдозрідженим шаром зрошуваної насадки складних форм із сітчастих матеріалів. Отже, необхідне проведення спеціальних досліджень гідродинамічних режимів роботи апарату з сітчастою насадкою і визначенням параметрів, що впливають на швидкість переходу насадки з одного режиму в інший.Industrial implementation of the stabilization method of the gas-liquid layer can significantly expand the field of use of foaming apparatus and opens up new opportunities for intensifying technological processes with the simultaneous creation of low-waste technologies. The article establishes the basic parameters influencing the hydrodynamics of foam apparatus, considers the basic constructions and operating modes of foam apparatus. The connection of hydrodynamic parameters is revealed. The hydrodynamic laws of the foam layer are considered. The indicated factors affecting the process of mass transfer, both in the gas and in the liquid phases. The conducted analysis of a number of studies showed that the perspective direction of intensification of the mass transfer process is the development of apparatuses with a three-phase fluidized bed of an irrigated nozzle of complex forms with mesh materials

    Novel expression of EGFL7 in placental trophoblast and endothelial cells and its implication in preeclampsia

    Get PDF
    The mammalian placenta is the site of nutrient and gas exchange between the mother and fetus, and is comprised of two principal cell types, trophoblasts and endothelial cells. Proper placental development requires invasion and differentiation of trophoblast cells, together with coordinated fetal vasculogenesis and maternal vascular remodeling. Disruption in these processes can result in placental pathologies such as preeclampsia (PE), a disease characterized by late gestational hypertension and proteinuria. Epidermal Growth Factor Like Domain 7 (EGFL7) is a largely endothelial-restricted secreted factor that is critical for embryonic vascular development, and functions by modulating the Notch signaling pathway. However, the role of EGFL7 in placental development remains unknown. In this study, we use mouse models and human placentas to begin to understand the role of EGFL7 during normal and pathological placentation. We show that Egfl7 is expressed by the endothelium of both the maternal and fetal vasculature throughout placental development. Importantly, we uncovered a previously unknown site of EGFL7 expression in the trophoblast cell lineage, including the trophectoderm, trophoblast stem cells, and placental trophoblasts. Our results demonstrate significantly reduced Egfl7 expression in human PE placentas, concurrent with a downregulation of Notch target genes. Moreover, using the BPH/5 mouse model of PE, we show that the downregulation of Egfl7 in compromised placentas occurs prior to the onset of characteristic maternal signs of PE. Together, our results implicate Egfl7 as a possible factor in normal placental development and in the etiology of PE

    Elucidating the role of lipid rafts on g protein-coupled receptor function in the mouse kidney: An in vivo approach

    No full text
    © 2021, Springer Science+Business Media, LLC, part of Springer Nature. Numerous G protein-coupled receptors (GPCRs) and GPCR-signaling molecules reside in lipid rafts and thus, are inherently regulated in these microdomains. However, the limitations of current methods to investigate lipid raft biology and GPCR activity in situ have hindered the complete understanding of the molecular underpinnings of GPCR trafficking and signaling, especially in the whole organism. This book chapter details an innovative in vivo approach to study the crucial role of lipid rafts on the workings of GPCRs in the mouse kidney. This protocol involves the use of a modified mini osmotic pump to deliver an agent that selectively disrupts the lipid raft in the kidney
    corecore