53 research outputs found

    Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5β€²-phosphate synthesis

    Get PDF
    Overexpression of seven different genes restores growth of a Ξ”pdxB strain of E. coli, which cannot make pyridoxal phosphate (PLP), on M9/glucose.None of the enzymes encoded by these genes has a promiscuous 4-phosphoerythronate dehydrogenase activity that can replace the activity of PdxB.Overexpression of these genes restores PLP synthesis by three different serendipitous pathways that feed into the normal PLP synthesis pathway downstream of the blocked step.Reactions in one of these pathways are catalyzed by low-level activities of enzymes of unknown function and a promiscuous activity of an enzyme that normally has a role in another pathway; one reaction appears to be non-enzymatic

    Aeromonas spp.-mediated cell-contact cytotoxicity is associated with the presence of type III secretion system

    Get PDF
    In the study we examined the production of cytotonic and cytotoxic toxins and the presence of a type III secretion system (TTSS) in 64 Aeromonas spp. strains isolated from fecal specimens of patients with gastroenteritis. We observed that contact of the bacteria with host epithelial cells is a prerequisite for their cytotoxicity at 3Β h incubation. Cell-contact cytotoxic activity of the strains was strongly associated with the presence of the TTSS. Culture supernatants of the strains induced low cytotoxicity effects at the same time of incubation. Cell-free supernatants of 61 (95%) isolates expressed cytotoxic activity which caused the destruction of HEp-2 cells at 24Β h. Moreover, 44% strains were cytotonic towards CHO cells and 46% of strains invaded epithelial cells

    An unusual presentation of anetoderma: a case report

    Get PDF
    BACKGROUND: Anetoderma is a benign condition with focal loss of dermal elastic tissue resulting in localized areas of flaccid or herniated saclike skin. Currently, anetoderma is classified as either primary (idiopathic), or secondary anetoderma (which is associated with a variety of skin conditions, penicillamine use, or neonatal prematurity). Lesions appear on the upper arms, trunk, and thighs. CASE PRESENTATION: We report a 14-year-old boy, which was noticed to have had multiple, white, non-pruritic areas on the acral sites of upper and lower extremities for two years. In physical examination, the patient had normal mental development. Skin lesions consisted of scattered, white to skin-colored papules, less than 1 cm in diameter, and with central protrusion, with distribution on dorsal part of the index finger, forearms, distal portion of thighs and calves. Lesions were detected neither on the trunk nor the proximal areas of extremities. There are no sensory changes associated with the lesions. Otherwise, his general health was good. He did not have any medication consumption history. Family history was negative. Laboratory examinations were within normal limits. Skin biopsy from one of his lesions was done, that confirmed the diagnosis of anetoderma. CONCLUSIONS: In summary, we report a case of anetoderma on unusual sites of the skin. We could not find similar reports of anetoderma developing on distal extremities without involvement of the upper trunk and proximal arms, in the medical literature

    Drug Discovery for Schistosomiasis: Hit and Lead Compounds Identified in a Library of Known Drugs by Medium-Throughput Phenotypic Screening

    Get PDF
    The flatworm disease schistosomiasis infects over 200 million people with just one drug (praziquantel) availableβ€”a concern should drug resistance develop. Present drug discovery approaches for schistosomiasis are slow and not conducive to automation in a high-throughput format. Therefore, we designed a three-component screen workflow that positions the larval (schistosomulum) stage of S. mansoni at its apex followed by screens of adults in culture and, finally, efficacy tests in infected mice. Schistosomula are small enough and available in sufficient numbers to interface with automated liquid handling systems and prosecute thousands of compounds in short time frames. We inaugurated the workflow with a 2,160 compound library that includes known drugs in order to cost effectively β€˜re-position’ drugs as new therapies for schistosomiasis and/or identify compounds that could be modified to that end. We identify a variety of β€˜hit’ compounds (antibiotics, psychoactives, antiparasitics, etc.) that produce behavioral responses (phenotypes) in schistosomula and adults. Tests in infected mice of the most promising hits identified a number of β€˜leads,’ one of which compares reasonably well with praziquantel in killing worms, decreasing egg production by the parasite, and ameliorating disease pathology. Efforts continue to more fully automate the workflow. All screen data are posted online as a drug discovery resource

    Bacteria Modulate the CD8+ T Cell Epitope Repertoire of Host Cytosol-Exposed Proteins to Manipulate the Host Immune Response

    Get PDF
    The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested

    Modulation of host cell processes by T3SS effectors

    Get PDF
    Two of the enteric Escherichia coli pathotypes-enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC)-have a conserved type 3 secretion system which is essential for virulence. The T3SS is used to translocate between 25 and 50 bacterial proteins directly into the host cytosol where they manipulate a variety of host cell processes to establish a successful infection. In this chapter, we discuss effectors from EPEC/EHEC in the context of the host proteins and processes that they target-the actin cytoskeleton, small guanosine triphosphatases and innate immune signalling pathways that regulate inflammation and cell death. Many of these translocated proteins have been extensively characterised, which has helped obtain insights into the mechanisms of pathogenesis of these bacteria and also understand the host pathways they target in more detail. With increasing knowledge of the positive and negative regulation of host signalling pathways by different effectors, a future challenge is to investigate how the specific effector repertoire of each strain cooperates over the course of an infection

    Cildb: a knowledgebase for centrosomes and cilia

    Get PDF
    Ciliopathies, pleiotropic diseases provoked by defects in the structure or function of cilia or flagella, reflect the multiple roles of cilia during development, in stem cells, in somatic organs and germ cells. High throughput studies have revealed several hundred proteins that are involved in the composition, function or biogenesis of cilia. The corresponding genes are potential candidates for orphan ciliopathies. To study ciliary genes, model organisms are used in which particular questions on motility, sensory or developmental functions can be approached by genetics. In the course of high throughput studies of cilia in Paramecium tetraurelia, we were confronted with the problem of comparing our results with those obtained in other model organisms. We therefore developed a novel knowledgebase, Cildb, that integrates ciliary data from heterogeneous sources. Cildb links orthology relationships among 18 species to high throughput ciliary studies, and to OMIM data on human hereditary diseases. The web interface of Cildb comprises three tools, BioMart for complex queries, BLAST for sequence homology searches and GBrowse for browsing the human genome in relation to OMIM information for human diseases. Cildb can be used for interspecies comparisons, building candidate ciliary proteomes in any species, or identifying candidate ciliopathy genes

    Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa

    Get PDF
    Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2βˆ’/βˆ’) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2βˆ’/βˆ’ mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2βˆ’/βˆ’ vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2βˆ’/βˆ’ mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2βˆ’/βˆ’ vs. WT mice, with overt pathogen and commensal translocation into the Muc2βˆ’/βˆ’ colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2βˆ’/βˆ’ mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium
    • …
    corecore