29 research outputs found

    Accuracy of elastic fusion biopsy in daily practice: results of a multicenter study of 2115 patients

    Get PDF
    OBJECTIVES: To assess the accuracy of Koelis fusion biopsy for the detection of prostate cancer and clinically significant prostate cancer in the everyday practice. METHODS: We retrospectively enrolled 2115 patients from 15 institutions in four European countries undergoing transrectal Koelis fusion biopsy from 2010 to 2017. A variable number of target (usually 2-4) and random cores (usually 10-14) were carried out, depending on the clinical case and institution habits. The overall and clinically significant prostate cancer detection rates were assessed, evaluating the diagnostic role of additional random biopsies. The cancer detection rate was correlated to multiparametric magnetic resonance imaging features and clinical variables. RESULTS: The mean number of targeted and random cores taken were 3.9 (standard deviation 2.1) and 10.5 (standard deviation 5.0), respectively. The cancer detection rate of Koelis biopsies was 58% for all cancers and 43% for clinically significant prostate cancer. The performance of additional, random cores improved the cancer detection rate of 13% for all cancers (P < 0.001) and 9% for clinically significant prostate cancer (P < 0.001). Prostate cancer was detected in 31%, 66% and 89% of patients with lesions scored as Prostate Imaging Reporting and Data System 3, 4 and 5, respectively. Clinical stage and Prostate Imaging Reporting and Data System score were predictors of prostate cancer detection in multivariate analyses. Prostate-specific antigen was associated with prostate cancer detection only for clinically significant prostate cancer. CONCLUSIONS: Koelis fusion biopsy offers a good cancer detection rate, which is increased in patients with a high Prostate Imaging Reporting and Data System score and clinical stage. The performance of additional, random cores seems unavoidable for correct sampling. In our experience, the Prostate Imaging Reporting and Data System score and clinical stage are predictors of prostate cancer and clinically significant prostate cancer detection; prostate-specific antigen is associated only with clinically significant prostate cancer detection, and a higher number of biopsy cores are not associated with a higher cancer detection rate

    Transmission electron microscopy characterization of GaN layers grown by MOCVD on sapphire

    No full text
    International audienceWe characterize by transmission electron microscopy (TEM), GaN layers deposited by metal organic chemical vapor deposition (MOCVD) on (0001) sapphire. Different GaN films with different surface morphologies have been observed and their crystallographic quality determined. Polarity and surface diffusion are the important factors that determine the surface morphology. The lack of an adapted buffer layer leads to a layer with a dominant N-polarity that contains many inversion domains (IDs) (of Ga-polarity) that grow faster than the surrounding material and form pyramids. All the flat unipolar GaN films we have observed have a Ga-polarity. Unipolarity (Ga-polarity) is realized with the recrystallization of the low temperature buffer layer or/and of the nitridation of the sapphire substrate. An intermediate cubic phase has been observed at the sapphire/buffer layer interface of optimized nitridated samples. In non optimized samples, IDs (of N-polarity) can remain near the buffer layer, but they tend to disappear during the growth of the Ga-polar GaN layer. A high growth temperature (about 1000 degrees C) was necessary to obtain flat GaN layers. (C) 1997 Elsevier Science S.A

    The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films

    No full text
    Photoluminescence (PL) and time-resolved PL experiments as a function of the elaboration process are performed on Er-doped silicon-rich silicon oxide (SRO:Er) thin films grown under NH(3) atmosphere. These PL measurements of the Er(3+) emission at 1.54 mu m under non-resonant pumping with the Er f-f transitions are obtained for different Er(3+) concentrations, ranging from 0.05 to 1.4 at.%, and various post-growth annealing temperatures of the layers. High resolution transmission electron microscopy (HRTEM) and energy-filtered TEM (EFTEM) analysis show a high density of Si nanostructures composed of amorphous and crystalline nanoclusters varying from 2.7 x 10(18) to 10(18) cm(-3) as a function of the post-growth annealing temperature. Measurements of PL lifetime and effective Er excitation cross section for all the samples under non-resonant optical excitation with the Er(3+) atomic energy levels show that the number of Er(3+) ions sensitized by the silicon-rich matrix decreases as the annealing temperature is increased from 500 to 1050 degrees C. The origin of this effect is attributed to the reduction of the density of sensitizers for Er ions in the SRO matrix when the annealing temperature increases. Finally, extended x-ray absorption fine-structure spectroscopy (EXAFS) shows a strong correlation between the number of emitters and the mean local order around the erbium ions

    Interaction of FkpA, a peptidyl-prolyl cis/trans isomerase with EspP autotransporter protein

    No full text
    The serine protease autotransporters of Enterobacteriaceae (SPATEs) represent a large class of proteases with contributions to virulence. They are synthesized with a C-terminal domain that forms a β-barrel pore in the outer membrane implicated in translocation of the N-terminal ‘passenger’ domain across the outer membrane. The most recent model for autotransporter secretion comprises entry to the periplasm via the Sec apparatus, followed by the insertion of the C-terminus into the outer membrane as a β-barrel protein and accompanied by translocation of the passenger domain to the bacterial cell surface, all of this with the assistance of the Bam complex insertase/foldase and periplasmic chaperone proteins. We have recently observed direct involvement of periplasmic chaperones in the biogenesis of EspP, a prototypical autotransporter protein produced by Escherichia coli O157:H7. Using molecular and biophysical approaches we demonstrated for the first time, direct protein-protein interactions between the periplasmic SurA and DegP chaperones and either the EspP-β or EspP passenger domains. Such chaperone interactions took place on conserved aromatic residues on the SPATE family. In this report, we now demonstrate direct binding of the periplasmic chaperone FkpA to the EspP passanger domain in Surface Plasmon Resonance experiments with relatively high affinity. We also provide evidence of interaction between the SurA and Skp chaperones with the Bam. These findings in conjunction with newly published data support the role of chaperones in preventing misfolding of AT passenger domains before translocation throughout the Bam complex

    Transferable single-crystal GaN thin films grown on chemical vapor-deposited hexagonal BN sheets

    No full text
    Single-crystal gallium nitride (GaN) layers were directly grown on centimeter-scale hexagonal boron nitride (h-BN). Using chemical vapor deposition (CVD), centimeter-scale h-BN films were synthesized on a single-crystal Ni(111) and readily transferred onto amorphous fused silica supporting substrates that had no epitaxial relationship with GaN. For growing fully coalescent GaN layers on h-BN, the achievement of high-density crystal growths was a critical growth step because the sp(2)-bonded h-BN layers are known to be free of dangling bonds. Unlike GaN layers grown on a typical heterogeneous sapphire substrate, the morphological and microstructural results strongly suggest a high-density growth feature that is driven by the atomic cliffs inherent in the CVD-grown h-BN layers. More importantly, the GaN layers grown on CVD-grown h-BN exhibited a flat and continuous surface morphology with well-aligned crystal orientations both along the c-axis and in-plane, indicating the characteristics of GaN heteroepitaxy on h-BN
    corecore