3,589 research outputs found

    Mycoplasma hyopneumoniae surface-associated proteases cleave bradykinin, substance P, neurokinin A and neuropeptide Y

    Full text link
    © 2019, The Author(s). Mycoplasma hyopneumoniae is an economically-devastating and geographically-widespread pathogen that colonises ciliated epithelium, and destroys mucociliary function. M. hyopneumoniae devotes ~5% of its reduced genome to encode members of the P97 and P102 adhesin families that are critical for colonising epithelial cilia, but mechanisms to impair mucociliary clearance and manipulate host immune response to induce a chronic infectious state have remained elusive. Here we identified two surface exposed M. hyopneumoniae proteases, a putative Xaa-Pro aminopeptidase (MHJ_0659; PepP) and a putative oligoendopeptidase F (MHJ_0522; PepF), using immunofluorescence microscopy and two orthogonal proteomic methodologies. MHJ_0659 and MHJ_0522 were purified as polyhistidine fusion proteins and shown, using a novel MALDI-TOF MS assay, to degrade four pro-inflammatory peptides that regulate lung homeostasis; bradykinin (BK), substance P (SP), neurokinin A (NKA) and neuropeptide Y (NPY). These findings provide insight into the mechanisms used by M. hyopneumoniae to influence ciliary beat frequency, impair mucociliary clearance, and initiate a chronic infectious disease state in swine, features that are a hallmark of disease caused by this pathogen

    Genome scan of Diabrotica virgifera virgifera for genetic variation associated with crop rotation tolerance

    Get PDF
    Crop rotation has been a valuable technique for control of Diabrotica virgifera virgifera for almost a century. However, during the last two decades, crop rotation has ceased to be effective in an expanding area of the US corn belt. This failure appears to be due to a change in the insect's oviposition behaviour, which, in all probability, has an underlying genetic basis. A preliminary genome scan using 253 amplified fragment-length polymorphism (AFLP) markers sought to identify genetic variation associated with the circumvention of crop rotation. Samples of D. v. virgifera from east-central Illinois, where crop rotation is ineffective, were compared with samples from Iowa at locations that the behavioural variant has yet to reach. A single AFLP marker showed signs of having been influenced by selection for the circumvention of crop rotation. However, this marker was not diagnostic. The lack of markers strongly associated with the trait may be due to an insufficient density of marker coverage throughout the genome. A weak but significant general heterogeneity was observed between the Illinois and Iowa samples at microsatellite loci and AFLP markers. This has not been detected in previous population genetic studies of D. v. virgifera and may indicate a reduction in gene flow between variant and wild-type beetles

    N-terminomics identifies widespread endoproteolysis and novel methionine excision in a genome-reduced bacterial pathogen

    Full text link
    © 2017 The Author(s). Proteolytic processing alters protein function. Here we present the first systems-wide analysis of endoproteolysis in the genome-reduced pathogen Mycoplasma hyopneumoniae. 669 N-terminal peptides from 164 proteins were identified, demonstrating that functionally diverse proteins are processed, more than half of which 75 (53%) were accessible on the cell surface. Multiple cleavage sites were characterised, but cleavage with arginine in P1 predominated. Putative functions for a subset of cleaved fragments were assigned by affinity chromatography using heparin, actin, plasminogen and fibronectin as bait. Binding affinity was correlated with the number of cleavages in a protein, indicating that novel binding motifs are exposed, and protein disorder increases, after a cleavage event. Glyceraldehyde 3-phosphate dehydrogenase was used as a model protein to demonstrate this. We define the rules governing methionine excision, show that several aminopeptidases are involved, and propose that through processing, genome-reduced organisms can expand protein function

    The nature and origins of sub-Neptune size planets

    Get PDF
    Planets intermediate in size between the Earth and Neptune, and orbiting closer to their host stars than Mercury does the Sun, are the most common type of planet revealed by exoplanet surveys over the last quarter century. Results from NASA's Kepler mission have revealed a bimodality in the radius distribution of these objects, with a relative underabundance of planets between 1.5 and 2.0 urn:x-wiley:21699097:media:jgre21507:jgre21507-math-0001. This bimodality suggests that sub‐Neptunes are mostly rocky planets that were born with primary atmospheres a few percent by mass accreted from the protoplanetary nebula. Planets above the radius gap were able to retain their atmospheres (“gas‐rich super‐Earths”), while planets below the radius gap lost their atmospheres and are stripped cores (“true super‐Earths”). The mechanism that drives atmospheric loss for these planets remains an outstanding question, with photoevaporation and core‐powered mass loss being the prime candidates. As with the mass‐loss mechanism, there are two contenders for the origins of the solids in sub‐Neptune planets: the migration model involves the growth and migration of embryos from beyond the ice line, while the drift model involves inward‐drifting pebbles that coagulate to form planets close‐in. Atmospheric studies have the potential to break degeneracies in interior structure models and place additional constraints on the origins of these planets. However, most atmospheric characterization efforts have been confounded by aerosols. Observations with upcoming facilities are expected to finally reveal the atmospheric compositions of these worlds, which are arguably the first fundamentally new type of planetary object identified from the study of exoplanets

    Memory consolidation in the cerebellar cortex

    Get PDF
    Several forms of learning, including classical conditioning of the eyeblink, depend upon the cerebellum. In examining mechanisms of eyeblink conditioning in rabbits, reversible inactivations of the control circuitry have begun to dissociate aspects of cerebellar cortical and nuclear function in memory consolidation. It was previously shown that post-training cerebellar cortical, but not nuclear, inactivations with the GABA(A) agonist muscimol prevented consolidation but these findings left open the question as to how final memory storage was partitioned across cortical and nuclear levels. Memory consolidation might be essentially cortical and directly disturbed by actions of the muscimol, or it might be nuclear, and sensitive to the raised excitability of the nuclear neurons following the loss of cortical inhibition. To resolve this question, we simultaneously inactivated cerebellar cortical lobule HVI and the anterior interpositus nucleus of rabbits during the post-training period, so protecting the nuclei from disinhibitory effects of cortical inactivation. Consolidation was impaired by these simultaneous inactivations. Because direct application of muscimol to the nuclei alone has no impact upon consolidation, we can conclude that post-training, consolidation processes and memory storage for eyeblink conditioning have critical cerebellar cortical components. The findings are consistent with a recent model that suggests the distribution of learning-related plasticity across cortical and nuclear levels is task-dependent. There can be transfer to nuclear or brainstem levels for control of high-frequency responses but learning with lower frequency response components, such as in eyeblink conditioning, remains mainly dependent upon cortical memory storage

    MHJ-0461 is a multifunctional leucine aminopeptidase on the surface of Mycoplasma hyopneumoniae

    Full text link
    © 2015 The Authors. Published. Aminopeptidases are part of the arsenal of virulence factors produced by bacterial pathogens that inactivate host immune peptides. Mycoplasma hyopneumoniae is a genome-reduced pathogen of swine that lacks the genetic repertoire to synthesize amino acids and relies on the host for availability of amino acids for growth. M. hyopneumoniae recruits plasmin(ogen) onto its cell surface via the P97 and P102 adhesins and the glutamyl aminopeptidase MHJ-0125. Plasmin plays an important role in regulating the inflammatory response in the lungs of pigs infected with M. hyopneumoniae. We show that recombinant MHJ-0461 (rMHJ-0461) functions as a leucine aminopeptidase (LAP) with broad substrate specificity for leucine, alanine, phenylalanine, methionine and arginine and that MHJ-0461 resides on the surface of M. hyopneumoniae. rMHJ-0461 also binds heparin, plasminogen and foreign DNA. Plasminogen bound to rMHJ-0461 was readily converted to plasmin in the presence of tPA. Computational modelling identified putative DNA and heparin-binding motifs on solvent-exposed sites around a large pore on the LAP hexamer. We conclude that MHJ-0461 is a LAP that moonlights as a multifunctional adhesin on the cell surface of M. hyopneumoniae

    Four conjectures in Nonlinear Analysis

    Full text link
    In this chapter, I formulate four challenging conjectures in Nonlinear Analysis. More precisely: a conjecture on the Monge-Amp\`ere equation; a conjecture on an eigenvalue problem; a conjecture on a non-local problem; a conjecture on disconnectedness versus infinitely many solutions.Comment: arXiv admin note: text overlap with arXiv:1504.01010, arXiv:1409.5919, arXiv:1612.0819

    Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae

    Get PDF
    © 2016 The Authors. Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC-MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endopro-teolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity

    Live to cheat another day: bacterial dormancy facilitates the social exploitation of beta-lactamases

    Get PDF
    The breakdown of antibiotics by β-lactamases may be cooperative, since resistant cells can detoxify their environment and facilitate the growth of susceptible neighbours. However, previous studies of this phenomenon have used artificial bacterial vectors or engineered bacteria to increase the secretion of β-lactamases from cells. Here, we investigated whether a broad-spectrum β-lactamase gene carried by a naturally occurring plasmid (pCT) is cooperative under a range of conditions. In ordinary batch culture on solid media, there was little or no evidence that resistant bacteria could protect susceptible cells from ampicillin, although resistant colonies could locally detoxify this growth medium. However, when susceptible cells were inoculated at high densities, late-appearing phenotypically susceptible bacteria grew in the vicinity of resistant colonies. We infer that persisters, cells that have survived antibiotics by undergoing a period of dormancy, founded these satellite colonies. The number of persister colonies was positively correlated with the density of resistant colonies and increased as antibiotic concentrations decreased. We argue that detoxification can be cooperative under a limited range of conditions: if the toxins are bacteriostatic rather than bacteridical; or if susceptible cells invade communities after resistant bacteria; or if dormancy allows susceptible cells to avoid bactericides. Resistance and tolerance were previously thought to be independent solutions for surviving antibiotics. Here, we show that these are interacting strategies: the presence of bacteria adopting one solution can have substantial effects on the fitness of their neighbours
    corecore