30 research outputs found

    Staphylococcal phenotypes induced by naturally occurring and synthetic membrane-interactive polyphenolic β-lactam resistance modifiers.

    Get PDF
    Galloyl catechins, in particular (-)-epicatechin gallate (ECg), have the capacity to abrogate β-lactam resistance in methicillin-resistant strains of Staphylococcus aureus (MRSA); they also prevent biofilm formation, reduce the secretion of a large proportion of the exoproteome and induce profound changes to cell morphology. Current evidence suggests that these reversible phenotypic traits result from their intercalation into the bacterial cytoplasmic membrane. We have endeavoured to potentiate the capacity of ECg to modify the MRSA phenotype by stepwise removal of hydroxyl groups from the B-ring pharmacophore and the A:C fused ring system of the naturally occurring molecule. ECg binds rapidly to the membrane, inducing up-regulation of genes responsible for protection against cell wall stress and maintenance of membrane integrity and function. Studies with artificial membranes modelled on the lipid composition of the staphylococcal bilayer indicated that ECg adopts a position deep within the lipid palisade, eliciting major alterations in the thermotropic behaviour of the bilayer. The non-galloylated homolog (-)-epicatechin enhanced ECg-mediated effects by facilitating entry of ECg molecules into the membrane. ECg analogs with unnatural B-ring hydroxylation patterns induced higher levels of gene expression and more profound changes to MRSA membrane fluidity than ECg but adopted a more superficial location within the bilayer. ECg possessed a high affinity for the positively charged staphylococcal membrane and induced changes to the biophysical properties of the bilayer that are likely to account for its capacity to disperse the cell wall biosynthetic machinery responsible for β-lactam resistance. The ability to enhance these properties by chemical modification of ECg raises the possibility that more potent analogs could be developed for clinical evaluation

    Current status of the multinational Arabidopsis community

    Get PDF
    The multinational Arabidopsis research community is highly collaborative and over the past thirty years these activities have been documented by the Multinational Arabidopsis Steering Committee (MASC). Here, we (a) highlight recent research advances made with the reference plant Arabidopsis thaliana; (b) provide summaries from recent reports submitted by MASC subcommittees, projects and resources associated with MASC and from MASC country representatives; and (c) initiate a call for ideas and foci for the “fourth decadal roadmap,” which will advise and coordinate the global activities of the Arabidopsis research community

    AGO1 CONTROLS INFLORESCENCE ARCHITECTURE POSSIBLY BY REGULATING TFL1 EXPRESSION

    Full text link
    [EN] The TERMINAL FLOWER 1 (TFL1) gene is pivotal in the control of inflorescence architecture in arabidopsis. Thus, tfl1 mutants flower early and have a very short inflorescence phase, while TFL1-overexpressing plants have extended vegetative and inflorescence phases, producing many coflorescences. TFL1 is expressed in the shoot meristems, never in the flowers. In the inflorescence apex, TFL1 keeps the floral genes LEAFY (LFY) and APETALA1 (AP1) restricted to the flower, while LFY and AP1 restrict TFL1 to the inflorescence meristem. In spite of the central role of TFL1 in inflorescence architecture, regulation of its expression is poorly understood. This study aims to expand the understanding of inflorescence development by identifying and studying novel TFL1 regulators. Mutagenesis of an Arabidopsis thaliana line carrying a TFL1::GUS (beta-glucuronidase) reporter construct was used to isolate a mutant with altered TFL1 expression. The mutated gene was identified by positional cloning. Expression of TFL1 and TFL1::GUS was analysed by real-time PCR and histochemical GUS detection. Double-mutant analysis was used to assess the contribution of TFL1 to the inflorescence mutant phenotype. A mutant with both an increased number of coflorescences and high and ectopic TFL1 expression was isolated. Cloning of the mutated gene showed that both phenotypes were caused by a mutation in the ARGONAUTE1 (AGO1) gene, which encodes a key component of the RNA silencing machinery. Analysis of another ago1 allele indicated that the proliferation of coflorescences and ectopic TFL1 expression phenotypes are not allele specific. The increased number of coflorescences is suppressed in ago1 tfl1 double mutants. The results identify AGO1 as a repressor of TFL1 expression. Moreover, they reveal a novel role for AGO1 in inflorescence development, controlling the production of coflorescences. AGO1 seems to play this role through regulating TFL1 expression.We thank Herve Vaucheret for the ago1-26 seeds, Antonio Serrano-Mislata for the pBTG6 construct, and Cristina Ferrandiz for critical reading of the manuscript. The collaboration of the IBMCP staff from the greenhouse, sequencing and microscopy facilities is also acknowledged. This work was supported by grants from the Spanish Ministerio de Ciencia e Innovacion (BIO2009-10876 and CSD2007-00057), the Spanish Ministerio de Economia y Competitividad (BFU2012-38929) and the Generalitat Valenciana (ACOMP2012-101). P.F.N. was supported by a fellowship from the I3P program of CSIC.Fernández Nohales, P.; Domenech Mir, MJ.; Martínez De Alba, AE.; Micol, J.; Ponce, M.; Madueño Albi, F. (2014). AGO1 CONTROLS INFLORESCENCE ARCHITECTURE POSSIBLY BY REGULATING TFL1 EXPRESSION. Annals of Botany. 114(7):1471-1481. https://doi.org/10.1093/aob/mcu132147114811147Abe, M. (2005). FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science, 309(5737), 1052-1056. doi:10.1126/science.1115983Ahn, J. H., Miller, D., Winter, V. J., Banfield, M. J., Lee, J. H., Yoo, S. Y., … Weigel, D. (2006). A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. The EMBO Journal, 25(3), 605-614. doi:10.1038/sj.emboj.7600950Alvarez, J., Guli, C. L., Yu, X.-H., & Smyth, D. R. (1992). terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. The Plant Journal, 2(1), 103-116. doi:10.1111/j.1365-313x.1992.00103.xAmasino, R. (2010). Seasonal and developmental timing of flowering. The Plant Journal, 61(6), 1001-1013. doi:10.1111/j.1365-313x.2010.04148.xAndrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13(9), 627-639. doi:10.1038/nrg3291Baulcombe, D. (2004). RNA silencing in plants. Nature, 431(7006), 356-363. doi:10.1038/nature02874Bartel, D. P. (2009). MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136(2), 215-233. doi:10.1016/j.cell.2009.01.002Benlloch, R., Berbel, A., Serrano-Mislata, A., & Madueno, F. (2007). Floral Initiation and Inflorescence Architecture: A Comparative View. Annals of Botany, 100(3), 659-676. doi:10.1093/aob/mcm146Blázquez, M. A., Ferrándiz, C., Madueño, F., & Parcy, F. (2006). How Floral Meristems are Built. Plant Molecular Biology, 60(6), 855-870. doi:10.1007/s11103-006-0013-zBohmert, K. (1998). AGO1 defines a novel locus of Arabidopsis controlling leaf development. The EMBO Journal, 17(1), 170-180. doi:10.1093/emboj/17.1.170Bradley, D. (1997). Inflorescence Commitment and Architecture in Arabidopsis. Science, 275(5296), 80-83. doi:10.1126/science.275.5296.80Brodersen, P., & Voinnet, O. (2009). Revisiting the principles of microRNA target recognition and mode of action. Nature Reviews Molecular Cell Biology, 10(2), 141-148. doi:10.1038/nrm2619Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-655. doi:10.1016/j.cell.2009.01.035Cerutti, L., Mian, N., & Bateman, A. (2000). Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends in Biochemical Sciences, 25(10), 481-482. doi:10.1016/s0968-0004(00)01641-8Conti, L., & Bradley, D. (2007). TERMINAL FLOWER1 Is a Mobile Signal Controlling Arabidopsis Architecture. The Plant Cell, 19(3), 767-778. doi:10.1105/tpc.106.049767Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743Griffiths-Jones, S. (2004). The microRNA Registry. Nucleic Acids Research, 32(90001), 109D-111. doi:10.1093/nar/gkh023Griffiths-Jones, S. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 34(90001), D140-D144. doi:10.1093/nar/gkj112Hanano, S., & Goto, K. (2011). Arabidopsis TERMINAL FLOWER1 Is Involved in the Regulation of Flowering Time and Inflorescence Development through Transcriptional Repression. The Plant Cell, 23(9), 3172-3184. doi:10.1105/tpc.111.088641Ho, W. W. H., & Weigel, D. (2014). Structural Features Determining Flower-Promoting Activity of Arabidopsis FLOWERING LOCUS T. The Plant Cell, 26(2), 552-564. doi:10.1105/tpc.113.115220Huijser, P., & Schmid, M. (2011). The control of developmental phase transitions in plants. Development, 138(19), 4117-4129. doi:10.1242/dev.063511Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.xJover-Gil, S., Candela, H., & Ponce, M.-R. (2005). Plant microRNAs and development. The International Journal of Developmental Biology, 49(5-6), 733-744. doi:10.1387/ijdb.052015sjJover-Gil, S., Candela, H., Robles, P., Aguilera, V., Barrero, J. M., Micol, J. L., & Ponce, M. R. (2012). The MicroRNA Pathway Genes AGO1, HEN1 and HYL1 Participate in Leaf Proximal–Distal, Venation and Stomatal Patterning in Arabidopsis. Plant and Cell Physiology, 53(7), 1322-1333. doi:10.1093/pcp/pcs077Kaufmann, K., Wellmer, F., Muino, J. M., Ferrier, T., Wuest, S. E., Kumar, V., … Riechmann, J. L. (2010). Orchestration of Floral Initiation by APETALA1. Science, 328(5974), 85-89. doi:10.1126/science.1185244Kidner, C. A., & Martienssen, R. A. (2004). Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature, 428(6978), 81-84. doi:10.1038/nature02366Kidner, C. A., & Martienssen, R. A. (2005). The role of ARGONAUTE1 (AGO1) in meristem formation and identity. Developmental Biology, 280(2), 504-517. doi:10.1016/j.ydbio.2005.01.031Kidner, C. A., & Martienssen, R. A. (2005). The developmental role of microRNA in plants. Current Opinion in Plant Biology, 8(1), 38-44. doi:10.1016/j.pbi.2004.11.008Kozomara, A., & Griffiths-Jones, S. (2013). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42(D1), D68-D73. doi:10.1093/nar/gkt1181Liljegren, S. J., Gustafson-Brown, C., Pinyopich, A., Ditta, G. S., & Yanofsky, M. F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 Specify Meristem Fate. The Plant Cell, 11(6), 1007-1018. doi:10.1105/tpc.11.6.1007Liu, C., Teo, Z. W. N., Bi, Y., Song, S., Xi, W., Yang, X., … Yu, H. (2013). A Conserved Genetic Pathway Determines Inflorescence Architecture in Arabidopsis and Rice. Developmental Cell, 24(6), 612-622. doi:10.1016/j.devcel.2013.02.013Liu, J. (2004). Argonaute2 Is the Catalytic Engine of Mammalian RNAi. Science, 305(5689), 1437-1441. doi:10.1126/science.1102513Alejandra Mandel, M., Gustafson-Brown, C., Savidge, B., & Yanofsky, M. F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 360(6401), 273-277. doi:10.1038/360273a0Morel, J.-B., Godon, C., Mourrain, P., Béclin, C., Boutet, S., Feuerbach, F., … Vaucheret, H. (2002). Fertile Hypomorphic ARGONAUTE (ago1) Mutants Impaired in Post-Transcriptional Gene Silencing and Virus Resistance. The Plant Cell, 14(3), 629-639. doi:10.1105/tpc.010358Moyroud, E., Minguet, E. G., Ott, F., Yant, L., Posé, D., Monniaux, M., … Parcy, F. (2011). Prediction of Regulatory Interactions from Genome Sequences Using a Biophysical Model for the Arabidopsis LEAFY Transcription Factor. The Plant Cell, 23(4), 1293-1306. doi:10.1105/tpc.111.083329Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C., & Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature, 425(6955), 257-263. doi:10.1038/nature01958Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L. D., & Coen, E. (2007). Evolution and Development of Inflorescence Architectures. Science, 316(5830), 1452-1456. doi:10.1126/science.1140429Qi, Y., Denli, A. M., & Hannon, G. J. (2005). Biochemical Specialization within Arabidopsis RNA Silencing Pathways. Molecular Cell, 19(3), 421-428. doi:10.1016/j.molcel.2005.06.014Rusinov, V., Baev, V., Minkov, I. N., & Tabler, M. (2005). MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Research, 33(Web Server), W696-W700. doi:10.1093/nar/gki364Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101-1108. doi:10.1038/nprot.2008.73Schultz, E. A., & Haughn, G. W. (1991). LEAFY, a Homeotic Gene That Regulates Inflorescence Development in Arabidopsis. The Plant Cell, 771-781. doi:10.1105/tpc.3.8.771Shannon, S., & Meeks-Wagner, D. R. (1991). A Mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development. The Plant Cell, 877-892. doi:10.1105/tpc.3.9.877Shannon, S., & Meeks-Wagner, D. R. (1993). Genetic Interactions That Regulate Inflorescence Development in Arabidopsis. The Plant Cell, 639-655. doi:10.1105/tpc.5.6.639Song, J.-J. (2004). Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity. Science, 305(5689), 1434-1437. doi:10.1126/science.1102514Vaucheret, H. (2006). Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes & Development, 20(7), 759-771. doi:10.1101/gad.1410506Vaucheret, H. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes & Development, 18(10), 1187-1197. doi:10.1101/gad.1201404Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., & Meyerowitz, E. M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell, 69(5), 843-859. doi:10.1016/0092-8674(92)90295-nWigge, P. A. (2005). Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science, 309(5737), 1056-1059. doi:10.1126/science.1114358Winter, C. M., Austin, R. S., Blanvillain-Baufumé, S., Reback, M. A., Monniaux, M., Wu, M.-F., … Wagner, D. (2011). LEAFY Target Genes Reveal Floral Regulatory Logic, cis Motifs, and a Link to Biotic Stimulus Response. Developmental Cell, 20(4), 430-443. doi:10.1016/j.devcel.2011.03.019Yang, L., Huang, W., Wang, H., Cai, R., Xu, Y., & Huang, H. (2006). Characterizations of a Hypomorphic Argonaute1 Mutant Reveal Novel AGO1 Functions in Arabidopsis Lateral Organ Development. Plant Molecular Biology, 61(1-2), 63-78. doi:10.1007/s11103-005-5992-
    corecore