353 research outputs found

    Q methodology and a Delphi poll: a useful approach to researching a narrative approach to therapy

    Get PDF
    Q methodology and a Delphi poll combined qualitative and quantitative methods to explore definitions of White and Epston's (1990) narrative approach to therapy among a group of UK practitioners. A Delphi poll was used to generate statements about narrative therapy. The piloting of statements by the Delphi panel identified agreement about theoretical ideas underpinning narrative therapy and certain key practices. A wider group of practitioners ranked the statements in a Q sort and made qualitative comments about their sorting. Quantitative methods (principal components analysis) were used to extract eight accounts of narrative therapy, five of which are qualitatively analysed in this paper. Agreement and differences were identified across a range of issues, including the social construction of narratives, privileging a political stance or narrative techniques and the relationship with other therapies, specifically systemic psychotherapy. Q methodology, combined with the Delphi poll, was a unique and innovative feature of this study

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules

    Effects of cereal breakfasts on postprandial glucose, appetite regulation and voluntary energy intake at a subsequent standardized lunch; focusing on rye products

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rye products have been demonstrated to lower the acute insulin demand, induce a low and prolonged blood glucose response (high Glycemic Profile, GP) and reduce subclinical inflammation. These products may therefore contribute to a lowered risk of obesity, type 2 diabetes and cardio vascular disease. The objective of the present paper was to evaluate the mechanism for a reduced postprandial insulin demand with rye products, and to explore possible appetite regulating properties.</p> <p>Methods</p> <p>10 healthy subjects were served breakfast meals (50 g of available starch) with endosperm- or whole grain rye breads, with and without lactic acid, boiled whole grain rye- (RK) or wheat (WK) kernels, or white wheat bread reference (WWB) in random order in a cross-over design. Plasma concentrations of glucose, ghrelin, serum insulin, free fatty acids, adiponectin, breath hydrogen excretion (H<sub>2</sub>), and subjective satiety was evaluated during the postprandial phase. 270 min after the breakfast, an ad lib lunch buffet was served and the voluntary energy intake (EI) was registered.</p> <p>Results</p> <p>All rye products and WK induced lower insulinemic indices (II) than WWB. A lower incremental insulin peak following breakfast correlated with a lower EI at lunch (r = 0.38). A low II was related to improved satiety in the early postprandial phase (fullness AUC 0-60 min, r = -0.36). RK induced a higher GP compared to WWB and WK. A higher GP was related to a lowered <it>desire to eat </it>before lunch (AUC 210-270) and to a lower concentration of ghrelin in the late postprandial phase after breakfast (270 min), r = -0.29 and -0.29), which in turn was related to a lower voluntary EI (r = 0.43 and 0.33). The RK breakfast improved satiety in the early postprandial phase (0-60 min) compared to WWB, and induced a lower EI at lunch (-16%). A high content of indigestible carbohydrates in the breakfast products was related to improved satiety (0-60 min, r = 0.68 for fullness), and a higher breath H<sub>2 </sub>in the late postprandial phase (120-270 and 270-390 min, r = 0.46 and 0.70). High H<sub>2 </sub>(AUC 120-270 min) also correlated with lower EI (r = -0.34).</p> <p>Conclusions</p> <p>Rye products, rich in indigestible carbohydrates, induce colonic fermentation already post the breakfast meal, and lowers acute insulin responses. A high excretion of breath H2 also correlated with a higher GP. Especially, rye kernels induced a high GP which was associated with a 16% lowering of energy intake at a subsequent lunch meal. The bulking effect of rye fiber, colonically derived fermentation metabolites, a high GP and a low insulin response possibly all contributes to the benefits on glucose- and appetite regulation seen in an acute and semi-acute perspective.</p

    Standardization of surface electromyography utilized to evaluate patients with dysphagia

    Get PDF
    <p>Abstract</p> <p>Backgorund</p> <p>Patients suspected of having swallowing disorders, could highly benefit from simple diagnostic screening before being referred to specialist evaluations. We introduce surface electromyography (sEMG) to carry out rapid assessment of such patients and propose suggestions for standardizing sEMGs in order to identify abnormal deglutition.</p> <p>Methods</p> <p>Specifics steps for establishing standards for applying the technique for screening purposes (e.g., evaluation of specific muscles), the requirements for diagnostic sEMG equipment, the sEMG technique itself, and defining the tests suitable for assessing deglutition (e.g., saliva, normal, and excessive swallows and uninterrupted drinking of water) are presented in detail. A previously described normative database for single swallowing and drinking and standard approach to analysis was compared to data on the duration and electric activity of muscles involved in deglutition and with sEMG recordings in order to estimate stages of a swallow.</p> <p>Conclusion</p> <p>SEMG of swallowing is a simple and reliable method for screening and preliminary differentiation among dysphagia and odynophagia of various origins. This noninvasive radiation-free examination has a low level of discomfort, and is simple, timesaving and inexpensive to perform. With standardization of the technique and an established normative database, sEMG can serve as a reliable screening method for optimal patient management.</p

    Fibronectin Matrix Assembly Suppresses Dispersal of Glioblastoma Cells

    Get PDF
    Glioblastoma (GBM), the most aggressive and most common form of primary brain tumor, has a median survival of 12–15 months. Surgical excision, radiation and chemotherapy are rarely curative since tumor cells broadly disperse within the brain. Preventing dispersal could be of therapeutic benefit. Previous studies have reported that increased cell-cell cohesion can markedly reduce invasion by discouraging cell detachment from the tumor mass. We have previously reported that α5β1 integrin-fibronectin interaction is a powerful mediator of indirect cell-cell cohesion and that the process of fibronectin matrix assembly (FNMA) is crucial to establishing strong bonds between cells in 3D tumor-like spheroids. Here, we explore a potential role for FNMA in preventing dispersal of GBM cells from a tumor-like mass. Using a series of GBM-derived cell lines we developed an in vitro assay to measure the dispersal velocity of aggregates on a solid substrate. Despite their similar pathologic grade, aggregates from these lines spread at markedly different rates. Spreading velocity is inversely proportional to capacity for FNMA and restoring FNMA in GBM cells markedly reduces spreading velocity by keeping cells more connected. Blocking FNMA using the 70 KDa fibronectin fragment in FNMA-restored cells rescues spreading velocity, establishing a functional role for FNMA in mediating dispersal. Collectively, the data support a functional causation between restoration of FNMA and decreased dispersal velocity. This is a first demonstration that FNMA can play a suppressive role in GBM dispersal

    Theoretical Determination of the pK a Values of Betalamic Acid Related to the Free Radical Scavenger Capacity: Comparison Between Empirical and Quantum Chemical Methods

    Get PDF
    Health benefits of dietary phytochemicals have been suggested in recent years. Among 1000s of different compounds, Betalains, which occur in vegetables of the Cariophyllalae order (cactus pear fruits and red beet), have been considered because of reducing power and potential to affect redox-modulated cellular processes. The antioxidant power of Betalains is strictly due to the dissociation rate of the acid moieties present in all the molecules of this family of phytochemicals. Experimentally, only the pK a&nbsp;values of betanin were determined. Recently, it was evidenced it was evidenced as the acid dissociation, at different environmental pHs, affects on its electron-donating capacity, and further on its free radical scavenging power. The identical correlation was studied on another Betalains family compound, Betalamic Acid. Experimental evidences showed that the free radical scavenging capacity of this compound drastically decreases at pH&nbsp;&gt;&nbsp;5, but pK a values were experimentally not measured. With the aim to justify the Betalamic Acid behavior as free radical scavenger, in this paper we tried to predict in silico the pK a values by means different approaches. Starting from the known experimental pK as of acid compounds, both phytochemicals and small organic, two empirical approaches and quantum-mechanical calculation were compared to give reliable prediction of the pK as of Betalamic Acid. Results by means these computational approaches are consistent with the experimental evidences. As shown herein, in silico, the totally dissociated species, at the experimental pH&nbsp;&gt;&nbsp;5 in solution, is predominant, exploiting the higher electron-donating capability (HOMO energy). Therefore, the computational estimated pK a values of Betalamic Acid resulted very reliable

    Display of Cell Surface Sites for Fibronectin Assembly Is Modulated by Cell Adherence to 1F3 and C-Terminal Modules of Fibronectin

    Get PDF
    BACKGROUND: Fibronectin-null cells assemble soluble fibronectin shortly after adherence to a substrate coated with intact fibronectin but not when adherent to the cell-binding domain of fibronectin (modules (7)F3-(10)F3). Interactions of adherent cells with regions of adsorbed fibronectin other than modules (7)F3-(10)F3, therefore, are required for early display of the cell surface sites that initiate and direct fibronectin assembly. METHODOLOGY/PRINCIPAL FINDINGS: To identify these regions, coatings of proteolytically derived or recombinant pieces of fibronectin containing modules in addition to (7)F3-(10)F3 were tested for effects on fibronectin assembly by adherent fibronectin-null fibroblasts. Pieces as large as one comprising modules (2)F3-(14)F3, which include the heparin-binding and cell adhesion domains, were not effective in supporting fibronectin assembly. Addition of module (1)F3 or the C-terminal modules to modules (2)F3-(14)F3 resulted in some activity, and addition of both (1)F3 and the C-terminal modules resulted in a construct, (1)F3-C, that best mimicked the activity of a coating of intact fibronectin. Constructs (1)F3-C V0, (1)F3-C V64, and (1)F3-C Delta(V(15)F3(10)F1) were all able to support fibronectin assembly, suggesting that (1)F3 through (11)F1 and/or (12)F1 were important for activity. Coatings in which the active parts of (1)F3-C were present in different proteins were much less active than intact (1)F3-C. CONCLUSIONS: These results suggest that (1)F3 acts together with C-terminal modules to induce display of fibronectin assembly sites on adherent cells

    Initial Genomics of the Human Nucleolus

    Get PDF
    We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs) in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD–localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD–specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture

    Fibronectin matrix-mediated cohesion suppresses invasion of prostate cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invasion is an important early step in the metastatic cascade and is the primary cause of death of prostate cancer patients. In order to invade, cells must detach from the primary tumor. Cell-cell and cell-ECM interactions are important regulators of cohesion - a property previously demonstrated to mediate cell detachment and invasion. The studies reported here propose a novel role for α5β1 integrin - the principle mediator of fibronectin matrix assembly (FNMA) - as an invasion suppressor of prostate cancer cells.</p> <p>Methods</p> <p>Using a combination of biophysical and cell biological methods, and well-characterized prostate cancer cell lines of varying invasiveness, we explore the relationship between cohesion, invasiveness, and FNMA.</p> <p>Results</p> <p>We show that cohesion is inversely proportional to invasive capacity. We also show that more invasive cells express lower levels of α5β1 integrin and lack the capacity for FNMA. Cells were generated to over-express either wild-type α5 integrin or an integrin in which the cytoplasmic domain of α5 was replaced with that of α2. The α2 construct does not promote FNMA. We show that only wild-type α5 integrin promotes aggregate compaction, increases cohesion, and reduces invasion of the more aggressive cells, and that these effects can be blocked by the 70-kDa fibronectin fragment.</p> <p>Conclusions</p> <p>We propose that restoring capacity for FNMA in deficient cells can increase tumor intercellular cohesion to a point that significantly reduces cell detachment and subsequent invasion. In prostate cancer, this could be of therapeutic benefit by blocking an early key step in the metastatic cascade.</p
    corecore