80 research outputs found

    A Search for Energy Minimized Sequences of Proteins

    Get PDF
    In this paper, we present numerical evidence that supports the notion of minimization in the sequence space of proteins for a target conformation. We use the conformations of the real proteins in the Protein Data Bank (PDB) and present computationally efficient methods to identify the sequences with minimum energy. We use edge-weighted connectivity graph for ranking the residue sites with reduced amino acid alphabet and then use continuous optimization to obtain the energy-minimizing sequences. Our methods enable the computation of a lower bound as well as a tight upper bound for the energy of a given conformation. We validate our results by using three different inter-residue energy matrices for five proteins from protein data bank (PDB), and by comparing our energy-minimizing sequences with 80 million diverse sequences that are generated based on different considerations in each case. When we submitted some of our chosen energy-minimizing sequences to Basic Local Alignment Search Tool (BLAST), we obtained some sequences from non-redundant protein sequence database that are similar to ours with an E-value of the order of 10-7. In summary, we conclude that proteins show a trend towards minimizing energy in the sequence space but do not seem to adopt the global energy-minimizing sequence. The reason for this could be either that the existing energy matrices are not able to accurately represent the inter-residue interactions in the context of the protein environment or that Nature does not push the optimization in the sequence space, once it is able to perform the function

    Non-Bulk-Like Solvent Behavior in the Ribosome Exit Tunnel

    Get PDF
    As nascent proteins are synthesized by the ribosome, they depart via an exit tunnel running through the center of the large subunit. The exit tunnel likely plays an important part in various aspects of translation. Although water plays a key role in many bio-molecular processes, the nature of water confined to the exit tunnel has remained unknown. Furthermore, solvent in biological cavities has traditionally been characterized as either a continuous dielectric fluid, or a discrete tightly bound molecule. Using atomistic molecular dynamics simulations, we predict that the thermodynamic and kinetic properties of water confined within the ribosome exit tunnel are quite different from this simple two-state model. We find that the tunnel creates a complex microenvironment for the solvent resulting in perturbed rotational dynamics and heterogenous dielectric behavior. This gives rise to a very rugged solvation landscape and significantly retarded solvent diffusion. We discuss how this non-bulk-like solvent is likely to affect important biophysical processes such as sequence dependent stalling, co-translational folding, and antibiotic binding. We conclude with a discussion of the general applicability of these results to other biological cavities

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus

    Nature of protein family signatures: Insights from singular value analysis of position-specific scoring matrices

    Get PDF
    Position-specific scoring matrices (PSSMs) are useful for detecting weak homology in protein sequence analysis, and they are thought to contain some essential signatures of the protein families. In order to elucidate what kind of ingredients constitute such family-specific signatures, we apply singular value decomposition to a set of PSSMs and examine the properties of dominant right and left singular vectors. The first right singular vectors were correlated with various amino acid indices including relative mutability, amino acid composition in protein interior, hydropathy, or turn propensity, depending on proteins. A significant correlation between the first left singular vector and a measure of site conservation was observed. It is shown that the contribution of the first singular component to the PSSMs act to disfavor potentially but falsely functionally important residues at conserved sites. The second right singular vectors were highly correlated with hydrophobicity scales, and the corresponding left singular vectors with contact numbers of protein structures. It is suggested that sequence alignment with a PSSM is essentially equivalent to threading supplemented with functional information. The presented method may be used to separate functionally important sites from structurally important ones, and thus it may be a useful tool for predicting protein functions.Comment: 22 pages, 7 figures, 4 table

    Surprisingly Simple Mechanical Behavior of a Complex Embryonic Tissue

    Get PDF
    Background: Previous studies suggest that mechanical feedback could coordinate morphogenetic events in embryos. Furthermore, embryonic tissues have complex structure and composition and undergo large deformations during morphogenesis. Hence we expect highly non-linear and loading-rate dependent tissue mechanical properties in embryos. Methodology/Principal Findings: We used micro-aspiration to test whether a simple linear viscoelastic model was sufficient to describe the mechanical behavior of gastrula stage Xenopus laevis embryonic tissue in vivo. We tested whether these embryonic tissues change their mechanical properties in response to mechanical stimuli but found no evidence of changes in the viscoelastic properties of the tissue in response to stress or stress application rate. We used this model to test hypotheses about the pattern of force generation during electrically induced tissue contractions. The dependence of contractions on suction pressure was most consistent with apical tension, and was inconsistent with isotropic contraction. Finally, stiffer clutches generated stronger contractions, suggesting that force generation and stiffness may be coupled in the embryo. Conclusions/Significance: The mechanical behavior of a complex, active embryonic tissue can be surprisingly well described by a simple linear viscoelastic model with power law creep compliance, even at high deformations. We found no evidence of mechanical feedback in this system. Together these results show that very simple mechanical models can be useful in describing embryo mechanics. © 2010 von Dassow et al

    Shake a tail feather: the evolution of the theropod tail into a stiff aerodynamic surface

    Get PDF
    Theropod dinosaurs show striking morphological and functional tail variation; e.g., a long, robust, basal theropod tail used for counterbalance, or a short, modern avian tail used as an aerodynamic surface. We used a quantitative morphological and functional analysis to reconstruct intervertebral joint stiffness in the tail along the theropod lineage to extant birds. This provides new details of the tail's morphological transformation, and for the first time quantitatively evaluates its biomechanical consequences. We observe that both dorsoventral and lateral joint stiffness decreased along the non-avian theropod lineage (between nodes Theropoda and Paraves). Our results show how the tail structure of non-avian theropods was mechanically appropriate for holding itself up against gravity and maintaining passive balance. However, as dorsoventral and lateral joint stiffness decreased, the tail may have become more effective for dynamically maintaining balance. This supports our hypothesis of a reduction of dorsoventral and lateral joint stiffness in shorter tails. Along the avian theropod lineage (Avialae to crown group birds), dorsoventral and lateral joint stiffness increased overall, which appears to contradict our null expectation. We infer that this departure in joint stiffness is specific to the tail's aerodynamic role and the functional constraints imposed by it. Increased dorsoventral and lateral joint stiffness may have facilitated a gradually improved capacity to lift, depress, and swing the tail. The associated morphological changes should have resulted in a tail capable of producing larger muscular forces to utilise larger lift forces in flight. Improved joint mobility in neornithine birds potentially permitted an increase in the range of lift force vector orientations, which might have improved flight proficiency and manoeuvrability. The tail morphology of modern birds with tail fanning capabilities originated in early ornithuromorph birds. Hence, these capabilities should have been present in the early Cretaceous, with incipient tail-fanning capacity in the earliest pygostylian birds

    Chronic phase shifts of the photoperiod throughout pregnancy programs glucose intolerance and insulin resistance in the rat

    Get PDF
    Extent: 10p.Shift work during pregnancy is associated with an increased risk for preterm birth and low birth weight. However, the impact upon the long term health of the children is currently unknown. In this study, we used an animal model to determine the consequences of maternal shift work exposure on the health of the adult offspring. Pregnant rats were exposed to chronic phase shifts (CPS) in their photoperiod every 3–4 days throughout gestation and the first week after birth. Adult offspring were assessed for a range of metabolic, endocrine, circadian and neurobehavioural parameters. At 3 months of age, male pups exposed to the CPS schedule in utero had increased adiposity (+29%) and hyperleptinaemia (+99% at 0700h). By 12 months of age, both male and female rats displayed hyperleptinaemia (+26% and +41% respectively) and hyperinsulinaemia (+110% and +83% respectively). 12 month old female CPS rats displayed poor glucose tolerance (+18%) and increased insulin secretion (+29%) in response to an intraperitoneal glucose tolerance test. In CPS males the glucose response was unaltered, but the insulin response was reduced by 35%. The glucose response to an insulin tolerance test was decreased by 21% in CPS females but unaltered in males. Disruption of circadian rhythmicity during gestation resulted in gender dependent metabolic consequences for the adult offspring. These results highlight the need for a thorough analysis of shift work exposure in utero on the health of the adult offspring in humans.Tamara J. Varcoe, Nicole Wight, Athena Voultsios, Mark D. Salkeld and David J. Kennawa
    corecore