283 research outputs found

    Hamlet and the fall of the Berlin wall : the myth of interventionist Shakespeare performance

    Get PDF
    The critical reception of Heiner Müller’s 1990 Hamlet/Maschine at the Deutsches Theater in East Berlin epitomizes a trend of crediting GDR Shakespeare performance with political influence. Drawing on rehearsal notes and reviews, Oliver challenges the interventionist Shakespeare myth, contrasting the Deutsches Theater’s political involvement with the impact of its Hamlet production on events surrounding the fall of the Berlin Wall. Shakespeare’s capacity for political intervention at this point was limited by theater practitioners’ reliance on public funding, their close relationships with governmental authority, and an underlying distrust of the masses. Ultimately, GDR artists proved useful to the 1989 protest movement because they occupied a unique position at the interface of dissidence and power

    The impact of Stieltjes' work on continued fractions and orthogonal polynomials

    Full text link
    Stieltjes' work on continued fractions and the orthogonal polynomials related to continued fraction expansions is summarized and an attempt is made to describe the influence of Stieltjes' ideas and work in research done after his death, with an emphasis on the theory of orthogonal polynomials

    Enhanced Nogo-P3 amplitudes of mothers compared with non-mother women during an emotional Go/Nogo task

    Get PDF
    Background: It is known that emotion regulatory responses of humans are changed by the experiences they have, but in particular, they are changed by becoming a mother. A recent study has found how a woman's emotion regulatory response to a child's crying changes after becoming a mother. However, mothers' emotion regulatory responses other than those to children and the association between emotion regulatory response and parental stress are still unknown. Methods: Eighteen healthy Japanese females (nine mothers and nine non-mothers) participated in the experiment. They performed an emotional Go/Nogo task, with facial expressions of others (angry, happy, and neutral faces) used as emotional stimuli. The percentage of correct responses, response time, and event-related potentials (ERPs) during the task was measured. Results: This comparison revealed that the mother group had a larger P3 (Nogo-P3) amplitude than the non-mother group when Nogo trials were held. This indicates that in mothers, there was greater activation of the behavioral inhibition-related brain areas than in non-mother women when they inhibited inappropriate behavior following recognition of facial expressions of others. In addition, in the mother group, there was a negative correlation between parental stress levels and Nogo-P3 amplitudes evoked by angry faces. This suggests that there is a relation between the level of parental stress of mothers and their emotion regulatory responses to angry faces. Conclusions: Our results demonstrate that mothers' emotion regulatory processes may differ from those of non-mothers in response, not only to a child's crying but also to expressions of emotions by others, and also suggest that the inhibitory recognition activity of mothers can be affected by parental stres

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    EBP1 Is a Novel E2F Target Gene Regulated by Transforming Growth Factor-β

    Get PDF
    Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context

    Limb proportions show developmental plasticity in response to embryo movement

    Get PDF
    Animals have evolved limb proportions adapted to different environments, but it is not yet clear to what extent these proportions are directly influenced by the environment during prenatal development. The developing skeleton experiences mechanical loading resulting from embryo movement. We tested the hypothesis that environmentally-induced changes in prenatal movement influence embryonic limb growth to alter proportions. We show that incubation temperature influences motility and limb bone growth in West African Dwarf crocodiles, producing altered limb proportions which may, influence post-hatching performance. Pharmacological immobilisation of embryonic chickens revealed that altered motility, independent of temperature, may underpin this growth regulation. Use of the chick also allowed us to merge histological, immunochemical and cell proliferation labelling studies to evaluate changes in growth plate organisation, and unbiased array profiling to identify specific cellular and transcriptional targets of embryo movement. This disclosed that movement alters limb proportions and regulates chondrocyte proliferation in only specific growth plates. This selective targeting is related to intrinsic mTOR (mechanistic target of rapamycin) pathway activity in individual growth plates. Our findings provide new insights into how environmental factors can be integrated to influence cellular activity in growing bones and ultimately gross limb morphology, to generate phenotypic variation during prenatal development

    Spatial Anisotropies and Temporal Fluctuations in Extracellular Matrix Network Texture during Early Embryogenesis

    Get PDF
    Early stages of vertebrate embryogenesis are characterized by a remarkable series of shape changes. The resulting morphological complexity is driven by molecular, cellular, and tissue-scale biophysical alterations. Operating at the cellular level, extracellular matrix (ECM) networks facilitate cell motility. At the tissue level, ECM networks provide material properties required to accommodate the large-scale deformations and forces that shape amniote embryos. In other words, the primordial biomaterial from which reptilian, avian, and mammalian embryos are molded is a dynamic composite comprised of cells and ECM. Despite its central importance during early morphogenesis we know little about the intrinsic micrometer-scale surface properties of primordial ECM networks. Here we computed, using avian embryos, five textural properties of fluorescently tagged ECM networks — (a) inertia, (b) correlation, (c) uniformity, (d) homogeneity, and (e) entropy. We analyzed fibronectin and fibrillin-2 as examples of fibrous ECM constituents. Our quantitative data demonstrated differences in the surface texture between the fibronectin and fibrillin-2 network in Day 1 (gastrulating) embryos, with the fibronectin network being relatively coarse compared to the fibrillin-2 network. Stage-specific regional anisotropy in fibronectin texture was also discovered. Relatively smooth fibronectin texture was exhibited in medial regions adjoining the primitive streak (PS) compared with the fibronectin network investing the lateral plate mesoderm (LPM), at embryonic stage 5. However, the texture differences had changed by embryonic stage 6, with the LPM fibronectin network exhibiting a relatively smooth texture compared with the medial PS-oriented network. Our data identify, and partially characterize, stage-specific regional anisotropy of fibronectin texture within tissues of a warm-blooded embryo. The data suggest that changes in ECM textural properties reflect orderly time-dependent rearrangements of a primordial biomaterial. We conclude that the ECM microenvironment changes markedly in time and space during the most important period of amniote morphogenesis—as determined by fluctuating textural properties
    corecore