313 research outputs found

    Snapshot Provisioning of Cloud Application Stacks to Face Traffic Surges

    No full text
    Traffic surges, like the Slashdot effect, occur when a web application is overloaded by a huge number of requests, potentially leading to unavailability. Unfortunately, such traffic variations are generally totally unplanned, of great amplitude, within a very short period, and a variable delay to return to a normal regime. In this report, we introduce PeakForecast as an elastic middleware solution to detect and absorb a traffic surge. In particular, PeakForecast can, from a trace of queries received in the last seconds, minutes or hours, to detect if the underlying system is facing a traffic surge or not, and then estimate the future traffic using a forecast model with an acceptable precision, thereby calculating the number of resources required to absorb the remaining traffic to come. We validate our solution by experimental results demonstrating that it can provide instantaneous elasticity of resources for traffic surges observed on the Japanese version of Wikipedia during the Fukushima Daiichi nuclear disaster in March 2011.Les pics de trafic, tels que l'effet Slashdot, apparaissent lorsqu'une application web doit faire face un nombre important de requêtes qui peut potentiellement entraîner une mise hors service de l'application. Malheureusement, de telles variations de traffic sont en général totalement imprévues et d'une grande amplitude, arrivent pendant une très courte période de temps et le retour à un régime normal prend un délai variable. Dans ce rapport, nous présentons PeakForecast qui est une solution intergicielle élastique pour détecter et absorber les pics de trafic. En particulier, PeakForecast peut, à partir des traces de requêtes reçues dans les dernières secondes, minutes ou heures, détecter si le système sous-jacent fait face ou non à un pic de trafic, estimer le trafic futur en utilisant un modèle de prédiction suffisamment précis, et calculer le nombre de ressources nécessaires à l'absorption du trafic restant à venir. Nous validons notre solution avec des résultats expérimentaux qui démontrent qu'elle fournit une élasticité instantanée des ressources pour des pics de trafic qui ont été observés sur la version japonaise de Wikipedia lors de l'accident nucléaire de Fukushima Daiichi en mars 2011

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Beam Energy Dependence of Jet-Quenching Effects in Au plus Au Collisions at root s(NN)=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV

    Get PDF
    We report measurements of the nuclear modification factor, RCPR_{ \mathrm{CP}}, for charged hadrons as well as identified π+()\pi^{+(-)}, K+()K^{+(-)}, and p(p)p(\overline{p}) for Au+Au collision energies of sNN\sqrt{s_{_{ \mathrm{NN}}}} = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-pTp_{\mathrm{T}} net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra, but is also very similar for the kaon spectra. While the magnitude of the proton RCPR_{ \mathrm{CP}} at high pTp_{\mathrm{T}} does depend on collision energy, neither the proton nor the anti-proton RCPR_{ \mathrm{CP}} at high pTp_{\mathrm{T}} exhibit net suppression at any energy. A study of how the binary collision scaled high-pTp_{\mathrm{T}} yield evolves with centrality reveals a non-monotonic shape that is consistent with the idea that jet-quenching is increasing faster than the combined phenomena that lead to enhancement.We report measurements of the nuclear modification factor RCP for charged hadrons as well as identified π+(-), K+(-), and p(p¯) for Au+Au collision energies of sNN=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-pT net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra but is also very similar for the kaon spectra. While the magnitude of the proton RCP at high pT does depend on the collision energy, neither the proton nor the antiproton RCP at high pT exhibit net suppression at any energy. A study of how the binary collision-scaled high-pT yield evolves with centrality reveals a nonmonotonic shape that is consistent with the idea that jet quenching is increasing faster than the combined phenomena that lead to enhancement

    Coherent diffractive photoproduction of rho(0) mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider

    Get PDF
    corecore