93 research outputs found
Selective Ablation of Megalin in the Retinal Pigment Epithelium Results in Megaophthalmos, Macromelanosome Formation and Severe Retina Degeneration
PURPOSE:
Mutations in the megalin-encoding gene, LRP2, cause high myopia as seen in patients suffering from Donnai-Barrow/facio-oculo-acoustico-renal syndrome. Megalin is present in both the nonpigmented epithelium of the ciliary body and in the RPE. In this study, we set out to establish an animal model to study the mechanisms underlying the ocular phenotype and to establish if high myopia/megaophthalmos is induced by postnatal megalin-deficiency in the RPE.
METHODS:
Postnatal RPE-specific deletion of megalin was generated by crossing mice bearing a homozygous loxP-flanked Lrp2 allele with transgenic mice expressing the Cre recombinase driven by the BEST1 promotor. The model was investigated by immunohistologic techniques, and transmission electron microscopy.
RESULTS:
Mice with postnatal RPE-specific loss of megalin developed a megaophthalmos phenotype with dramatic increase in ocular size and severe retinal thinning associated with compromised vision. This phenotype was present at postnatal day 14, indicating rapid development in the period from onset of BEST1 promotor activity at postnatal day 10. Additionally, RPE melanosomes exhibited abnormal size and morphology, suggested by electron tomography to be caused by fusion events between multiple melanosomes.
CONCLUSIONS:
Postnatal loss of megalin in the RPE induces dramatic and rapid ocular growth and retinal degeneration compatible with the high myopia observed in Donnai-Barrow patients. The morphologic changes of RPE melanosomes, believed to be largely inert and fully differentiated at birth, suggested a continued plasticity of mature melanosomes and a requirement for megalin to maintain their number and morphology
Orally Active Multi-Functional Antioxidants Are Neuroprotective in a Rat Model of Light-Induced Retinal Damage
Progression of age-related macular degeneration has been linked to iron dysregulation and oxidative stress that induce apoptosis of neural retinal cells. Since both antioxidants and chelating agents have been reported to reduce the progression of retinal lesions associated with AMD in experimental animals, the present study evaluates the ability of multi-functional antioxidants containing functional groups that can independently chelate redox metals and quench free radicals to protect the retina against light-induced retinal degeneration, a rat model of dry atrophic AMD.Proof of concept studies were conducted to evaluate the ability of 4-(5-hydroxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 4) and 4-(5-hydroxy-4,6-dimethoxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 8) to reduce retinal damage in 2-week dark adapted Wistar rats exposed to 1000 lx of light for 3 hours. Assessment of the oxidative stress markers 4- hydroxynonenal and nitrotyrosine modified proteins and Thioredoxin by ELISA and Western blots indicated that these compounds reduced the oxidative insult caused by light exposure. The beneficial antioxidant effects of these compounds in providing significant functional and structural protection were confirmed by electroretinography and quantitative histology of the retina.The present study suggests that multi-functional compounds may be effective candidates for preventive therapy of AMD
Estimating cumulative pathway effects on risk for age-related macular degeneration using mixed linear models
BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the elderly in developed countries and typically affects more than 10 % of individuals over age 80. AMD has a large genetic component, with heritability estimated to be between 45 % and 70 %. Numerous variants have been identified and implicate various molecular mechanisms and pathways for AMD pathogenesis but those variants only explain a portion of AMD’s heritability. The goal of our study was to estimate the cumulative genetic contribution of common variants on AMD risk for multiple pathways related to the etiology of AMD, including angiogenesis, antioxidant activity, apoptotic signaling, complement activation, inflammatory response, response to nicotine, oxidative phosphorylation, and the tricarboxylic acid cycle. While these mechanisms have been associated with AMD in literature, the overall extent of the contribution to AMD risk for each is unknown. METHODS: In a case–control dataset with 1,813 individuals genotyped for over 600,000 SNPs we used Genome-wide Complex Trait Analysis (GCTA) to estimate the proportion of AMD risk explained by SNPs in genes associated with each pathway. SNPs within a 50 kb region flanking each gene were also assessed, as well as more distant, putatively regulatory SNPs, based on DNaseI hypersensitivity data from ocular tissue in the ENCODE project. RESULTS: We found that 19 previously associated AMD risk SNPs contributed to 13.3 % of the risk for AMD in our dataset, while the remaining genotyped SNPs contributed to 36.7 % of AMD risk. Adjusting for the 19 risk SNPs, the complement activation and inflammatory response pathways still explained a statistically significant proportion of additional risk for AMD (9.8 % and 17.9 %, respectively), with other pathways showing no significant effects (0.3 % – 4.4 %). DISCUSSION: Our results show that SNPs associated with complement activation and inflammation significantly contribute to AMD risk, separately from the risk explained by the 19 known risk SNPs. We found that SNPs within 50 kb regions flanking genes explained additional risk beyond genic SNPs, suggesting a potential regulatory role, but that more distant SNPs explained less than 0.5 % additional risk for each pathway. CONCLUSIONS: From these analyses we find that the impact of complement SNPs on risk for AMD extends beyond the established genome-wide significant SNPs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0760-4) contains supplementary material, which is available to authorized users
Genetic polymorphism of the iron-regulatory protein-1 and -2 genes in age-related macular degeneration
Iron can be involved in the pathogenesis of AMD through the oxidative stress because it may catalyze the Haber–Weiss and Fenton reactions converting hydrogen peroxide to free radicals, which can induce cellular damage. We hypothesized that genetic polymorphism in genes related to iron metabolism may predispose individuals to the development of AMD and therefore we checked for an association between the g.32373708 G>A polymorphism (rs867469) of the IRP1 gene and the g.49520870 G>A (rs17483548) polymorphism of the IRP2 gene and AMD risk as well as the modulation of this association by some environmental and life-style factors. Genotypes were determined in DNA from blood of 269 AMD patients and 116 controls by the allele-specific oligonucleotide-restriction fragment length polymorphism and the polymerase chain reaction-restriction fragment length polymorphism. An association between AMD, dry and wet forms of AMD and the G/G genotype of the g.32373708 G>A-IRP1 polymorphism was found (OR 3.40, 4.15, and 2.75). On the other hand, the G/A genotype reduced the risk of AMD as well as its dry or wet form (OR 0.23, 0.21, 0.26). Moreover, the G allele of the g.49520870 G>A-IRP2 polymorphism increased the risk of the dry form of the disease (OR 1.51) and the A/A genotype and the A allele decreased such risk (OR 0.43 and 0.66). Our data suggest that the g.32373708 G>A-IRP1 and g.49520870 G>A-IRP2 polymorphisms may be associated with increased risk for AMD
Chronic Cigarette Smoke Causes Oxidative Damage and Apoptosis to Retinal Pigmented Epithelial Cells in Mice
The purpose of this study was to determine whether mice exposed to chronic cigarette smoke develop features of early age-related macular degeneration (AMD). Two month old C57Bl6 mice were exposed to either filtered air or cigarette smoke in a smoking chamber for 5 h/day, 5 days/week for 6 months. Eyes were fixed in 2.5% glutaraldehyde/2% paraformaldehyde and examined for ultrastructural changes by transmission electron microscopy. The contralateral eye was fixed in 2% paraformaldehyde and examined for oxidative injury to the retinal pigmented epithelium (RPE) by 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-OHdG) immunolabeling and apoptosis by TUNEL labeling. Mice exposed to cigarette smoke had immunolabeling for 8-OHdG in 85±3.7% of RPE cells counted compared to 9.5±3.9% in controls (p<0.00001). Bruch membrane was thicker in mice exposed to smoke (1086±332 nm) than those raised in air (543±132 nm; p = 0.0069). The two most pronounced ultrastructural changes (severity grading scale from 0–3) seen were a loss of basal infoldings (mean difference in grade = 1.98; p<0.0001), and an increase in intracellular vacuoles (mean difference in grade = 1.7; p<0.0001). Ultrastructural changes to Bruch membrane in cigarette-smoke exposed mice were smaller in magnitude but consistently demonstrated significantly higher grade injury in cigarette-exposed mice, including basal laminar deposits (mean difference in grade = 0.54; p<0.0001), increased outer collagenous layer deposits (mean difference in grade = 0.59; p = 0.002), and increased basal laminar deposit continuity (mean difference in grade = 0.4; p<0.0001). TUNEL assay showed a higher percentage of apoptotic RPE from mice exposed to cigarette smoke (average 8.0±1.1%) than room air (average 0±0%; p = 0.043). Mice exposed to chronic cigarette smoke develop evidence of oxidative damage with ultrastructural degeneration to the RPE and Bruch membrane, and RPE cell apoptosis. This model could be useful for studying the mechanism of smoke induced changes during early AMD
X-Box Binding Protein 1 Is Essential for the Anti-Oxidant Defense and Cell Survival in the Retinal Pigment Epithelium
Damage to the retinal pigment epithelium (RPE) is an early event in the pathogenesis of age-related macular degeneration (AMD). X-box binding protein 1 (XBP1) is a key transcription factor that regulates endoplasmic reticulum (ER) homeostasis and cell survival. This study aimed to delineate the role of endogenous XBP1 in the RPE. Our results show that in a rat model of light-induced retinal degeneration, XBP1 activation was suppressed in the RPE/choroid complex, accompanied by decreased anti-oxidant genes and increased oxidative stress. Knockdown of XBP1 by siRNA resulted in reduced expression of SOD1, SOD2, catalase, and glutathione synthase and sensitized RPE cells to oxidative damage. Using Cre/LoxP system, we generated a mouse line that lacks XBP1 only in RPE cells. Compared to wildtype littermates, RPE-XBP1 KO mice expressed less SOD1, SOD2, and catalase in the RPE, and had increased oxidative stress. At age 3 months and older, these mice exhibited apoptosis of RPE cells, decreased number of cone photoreceptors, shortened photoreceptor outer segment, reduced ONL thickness, and deficit in retinal function. Electron microscopy showed abnormal ultrastructure, Bruch's membrane thickening, and disrupted basal membrane infolding in XBP1-deficient RPE. These results indicate that XBP1 is an important gene involved in regulation of the anti-oxidant defense in the RPE, and that impaired activation of XBP1 may contribute to RPE dysfunction and cell death during retinal degeneration and AMD
Iron Accumulation with Age, Oxidative Stress and Functional Decline
Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength) in male Fischer 344 X Brown Norway rats fed ad libitum (AL) or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age) at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR) rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects
- …