17,383 research outputs found
Solar System: Sifting through the debris
A quadrillion previously unnoticed small bodies beyond Neptune have been
spotted as they dimmed X-rays from a distant source. Models of the dynamics of
debris in the Solar System's suburbs must now be reworked.Comment: 3 pages, 1 figure; Nature News and Views on Chang et al. 2006,
Nature, 442, 660-66
Factor V Leiden and thrombosis in patients with systemic lupus erythematosus: a meta-analysis.
The aim of this study was to perform a meta-analysis of the association between the factor V Leiden polymorphism (FVL) and thrombosis among patients with systemic lupus erythematosus (SLE) and/or antiphospholipid antibody (aPL) positivity. Included studies recruited patients based on SLE or aPL-positive status, confirmed subjects' SLE diagnosis as defined by the American College of Rheumatology, and documented thrombotic events. Excluded studies were non-English or considered only arterial thrombosis. Individual patient data, available from 5 studies, together with unpublished data from 1210 European-American SLE patients from the UCSF Lupus Genetics Collection genotyped for FVL, were further analyzed. Seventeen studies (n=2090 subjects) were included in the initial meta-analysis. Unadjusted odds ratios (OR) were calculated to assess association of FVL with thrombosis. The OR for association of thrombosis with FVL was 2.88 (95% confidence interval (CI) 1.98-4.20). In the secondary analysis with our individual patient dataset (n=1447 European-derived individuals), SLE subjects with the FVL polymorphism still had more than two times the odds of thrombosis compared to subjects without this polymorphism, even when adjusting for covariates such as gender, age and aPL status. SLE and/or aPL-positive patients with the FVL variant have more than two times the odds of thrombosis compared to those without this polymorphism
Conformal symmetry in non-local field theories
We have shown that a particular class of non-local free field theory has
conformal symmetry in arbitrary dimensions. Using the local field theory
counterpart of this class, we have found the Noether currents and Ward
identities of the translation, rotation and scale symmetries. The operator
product expansion of the energy-momentum tensor with quasi-primary fields is
also investigated.Comment: 15 pages, V2 (Some references added) V3(published version
Inactivation of hypoxia inducible factor (HIF) 1 alpha induces obesity-associated metabolic disorders through brown adipose tissue dysfunction
published_or_final_versionThe 14th Medical Research Conference, Hong Kong, 10 January 2009. In Hong Kong Medical Journal, 2009, v. 15, suppl. 1, p. 40, article no. 6
One Loop Renormalization of the Littlest Higgs Model
In Little Higgs models a collective symmetry prevents the Higgs from
acquiring a quadratically divergent mass at one loop. This collective symmetry
is broken by weakly gauged interactions. Terms, like Yukawa couplings, that
display collective symmetry in the bare Lagrangian are generically renormalized
into a sum of terms that do not respect the collective symmetry except possibly
at one renormalization point where the couplings are related so that the
symmetry is restored. We study here the one loop renormalization of a
prototypical example, the Littlest Higgs Model. Some features of the
renormalization of this model are novel, unfamiliar form similar chiral
Lagrangian studies.Comment: 23 pages, 17 eps figure
Magnetic Fluffy Dark Matter
We explore extensions of inelastic Dark Matter and Magnetic inelastic Dark
Matter where the WIMP can scatter to a tower of heavier states. We assume a
WIMP mass GeV and a constant splitting between
successive states keV. For the
spin-independent scattering scenario we find that the direct experiments CDMS
and XENON strongly constrain most of the DAMA/LIBRA preferred parameter space,
while for WIMPs that interact with nuclei via their magnetic moment a region of
parameter space corresponding to GeV and keV
is allowed by all the present direct detection constraints.Comment: 16 pages, 6 figures, added comments about magnetic moment form factor
to Sec 3.1.2 and results to Sec 3.2.2, final version to be published in JHE
A single sub-km Kuiper Belt object from a stellar Occultation in archival data
The Kuiper belt is a remnant of the primordial Solar System. Measurements of
its size distribution constrain its accretion and collisional history, and the
importance of material strength of Kuiper belt objects (KBOs). Small, sub-km
sized, KBOs elude direct detection, but the signature of their occultations of
background stars should be detectable. Observations at both optical and X-ray
wavelengths claim to have detected such occultations, but their implied KBO
abundances are inconsistent with each other and far exceed theoretical
expectations. Here, we report an analysis of archival data that reveals an
occultation by a body with a 500 m radius at a distance of 45 AU. The
probability of this event to occur due to random statistical fluctuations
within our data set is about 2%. Our survey yields a surface density of KBOs
with radii larger than 250 m of 2.1^{+4.8}_{-1.7} x 10^7 deg^{-2}, ruling out
inferred surface densities from previous claimed detections by more than 5
sigma. The fact that we detected only one event, firmly shows a deficit of
sub-km sized KBOs compared to a population extrapolated from objects with r>50
km. This implies that sub-km sized KBOs are undergoing collisional erosion,
just like debris disks observed around other stars.Comment: To appear in Nature on December 17, 2009. Under press embargo until
1800 hours London time on 16 December. 19 pages; 7 figure
Bounds for State Degeneracies in 2D Conformal Field Theory
In this note we explore the application of modular invariance in
2-dimensional CFT to derive universal bounds for quantities describing certain
state degeneracies, such as the thermodynamic entropy, or the number of
marginal operators. We show that the entropy at inverse temperature 2 pi
satisfies a universal lower bound, and we enumerate the principal obstacles to
deriving upper bounds on entropies or quantum mechanical degeneracies for fully
general CFTs. We then restrict our attention to infrared stable CFT with
moderately low central charge, in addition to the usual assumptions of modular
invariance, unitarity and discrete operator spectrum. For CFT in the range
c_left + c_right < 48 with no relevant operators, we are able to prove an upper
bound on the thermodynamic entropy at inverse temperature 2 pi. Under the same
conditions we also prove that a CFT can have a number of marginal deformations
no greater than ((c_left + c_right) / (48 - c_left - c_right)) e^(4 Pi) - 2.Comment: 23 pages, LaTeX, minor change
Partially Composite Higgs in Supersymmetry
We propose a framework for natural breaking of electroweak symmetry in
supersymmetric models, where elementary Higgs fields are semi-perturbatively
coupled to a strong superconformal sector. The Higgs VEVs break conformal
symmetry in the strong sector at the TeV scale, and the strong sector in turn
gives important contributions to the Higgs potential, giving rise to a kind of
Higgs bootstrap. A Higgs with mass 125\GeV can be accommodated without any
fine tuning. A Higgsino mass of order the Higgs mass is also dynamically
generated in these models. The masses in the strong sector generically violate
custodial symmetry, and a good precision electroweak fit requires tuning of
order . The strong sector has an approximately supersymmetric
spectrum of hadrons at the TeV scale that can be observed by looking for a peak
in the invariant mass distribution, as well as final states containing
multiple , , and Higgs bosons. The models also generically predict large
corrections (either enhancement or suppression) to the h \to \ga\ga width.Comment: 31 page
Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3
double Holliday junction (dHJ) is a central intermediate of homologous recombination that can be processed to yield crossover or non-crossover recombination products. To preserve genomic integrity, cells possess mechanisms to avoid crossing over. We show that Saccharomyces cerevisiae Sgs1 and Top3 proteins are sufficient to migrate and disentangle a dHJ to produce exclusively non-crossover recombination products, in a reaction termed "dissolution." We show that Rmi1 stimulates dHJ dissolution at low Sgs1-Top3 protein concentrations, although it has no effect on the initial rate of Holliday junction (HJ) migration. Rmi1 serves to stimulate DNA decatenation, removing the last linkages between the repaired and template DNA molecules. Dissolution of a dHJ is a highly efficient and concerted alternative to nucleolytic resolution that prevents crossing over of chromosomes during recombinational DNA repair in mitotic cells and thereby contributes to genomic integrity
- …
