1,035 research outputs found

    From non-symmetric particle systems to non-linear PDEs on fractals

    Full text link
    We present new results and challenges in obtaining hydrodynamic limits for non-symmetric (weakly asymmetric) particle systems (exclusion processes on pre-fractal graphs) converging to a non-linear heat equation. We discuss a joint density-current law of large numbers and a corresponding large deviations principle.Comment: v2: 10 pages, 1 figure. To appear in the proceedings for the 2016 conference "Stochastic Partial Differential Equations & Related Fields" in honor of Michael R\"ockner's 60th birthday, Bielefel

    Interstellar Turbulence II: Implications and Effects

    Full text link
    Interstellar turbulence has implications for the dispersal and mixing of the elements, cloud chemistry, cosmic ray scattering, and radio wave propagation through the ionized medium. This review discusses the observations and theory of these effects. Metallicity fluctuations are summarized, and the theory of turbulent transport of passive tracers is reviewed. Modeling methods, turbulent concentration of dust grains, and the turbulent washout of radial abundance gradients are discussed. Interstellar chemistry is affected by turbulent transport of various species between environments with different physical properties and by turbulent heating in shocks, vortical dissipation regions, and local regions of enhanced ambipolar diffusion. Cosmic rays are scattered and accelerated in turbulent magnetic waves and shocks, and they generate turbulence on the scale of their gyroradii. Radio wave scintillation is an important diagnostic for small scale turbulence in the ionized medium, giving information about the power spectrum and amplitude of fluctuations. The theory of diffraction and refraction is reviewed, as are the main observations and scintillation regions.Comment: 46 pages, 2 figures, submitted to Annual Reviews of Astronomy and Astrophysic

    Nonlinear Localization in Metamaterials

    Full text link
    Metamaterials, i.e., artificially structured ("synthetic") media comprising weakly coupled discrete elements, exhibit extraordinary properties and they hold a great promise for novel applications including super-resolution imaging, cloaking, hyperlensing, and optical transformation. Nonlinearity adds a new degree of freedom for metamaterial design that allows for tuneability and multistability, properties that may offer altogether new functionalities and electromagnetic characteristics. The combination of discreteness and nonlinearity may lead to intrinsic localization of the type of discrete breather in metallic, SQUID-based, and PTβˆ’{\cal PT}-symmetric metamaterials. We review recent results demonstrating the generic appearance of breather excitations in these systems resulting from power-balance between intrinsic losses and input power, either by proper initialization or by purely dynamical procedures. Breather properties peculiar to each particular system are identified and discussed. Recent progress in the fabrication of low-loss, active and superconducting metamaterials, makes the experimental observation of breathers in principle possible with the proposed dynamical procedures.Comment: 19 pages, 14 figures, Invited (Review) Chapte

    Transformation and tumorigenicity testing of simian cell lines and evaluation of poliovirus replication

    Get PDF
    The key role of cell cultures in different scientific fields is worldwide recognized, both as in vitro research models alternative to laboratory animals and substrates for biological production. However, many safety concerns rise from the use of animal/human cell lines that may be tumorigenic, leading to potential adverse contaminations in cell-derived biologicals. In order to evaluate the suitability of 13 different cell lines for Poliovirus vaccine production, safety and quality, in vitro/in vivo tumorigenicity and Poliovirus propagation properties were evaluated. Our results revealed that non-human primate cell lines CYNOM-K1, FRhK-4, 4MBr-5 and 4647 are free of tumorigenic features and represent highly susceptible substrates for attenuated Sabin Poliovirus strains. In particular, FRhK-4 and 4647 cell lines are characterized by a higher in vitro replication, resulting indicated for the use in large-scale production field

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Comparison of the fracture resistance of endodontically treated teeth restored with prefabricated posts and composite resin cores with different post lenghts

    Get PDF
    OBJECTIVE: This study evaluated the fracture strengths of endodontically treated teeth restored with prefabricated posts with different post lengths. MATERIAL AND METHODS: Thirty freshly extracted canines were endodontically treated. They were randomly divided into groups of 10 teeth and prepared according to 3 experimental protocols, as follows; Group 1/3 PP: teeth restored with prefabricated post and composite resin core (Z250) with post length of 5.0mm; Group 1/2 PP and Group 2/3 PP: teeth restored with prefabricated post and composite resin core (Z250) with different combinations of post length of 7.5mm and 10mm, respectively. All teeth were restored with full metal crowns. The fracture resistance (N) was measured in a universal testing machine (crosshead speed 0.5mm/min) at 45 degrees to the tooth long axis until failure. Data were analyzed by one-way analysis of variance (alpha=.05). RESULTS: The one-way analysis of variance demonstrated no significant difference among the different post lengths (P>;.05) (Groups 1/3 PP = 405.4 N, 1/2 PP = 395.6 N, 2/3 PP = 393.8 N). Failures occurred mainly due to core fracture. CONCLUSIONS: The results of this study showed that an increased post length in teeth restored with prefabricated posts did not significantly increase the fracture resistance of endodontically treated teeth

    Association between intra-radicular posts and periapical lesions in endodontically treated teeth

    Get PDF
    Introduction: A significant number of endodontically treated teeth restored with posts have associated periapical lesions, and several authors have discussed the probable causes of the development of these. Attention has been focused on restorative procedures performed after endodontic treatment and their association with the prognosis of endodontic therapy because a number of root-filled teeth will require post- and core-retained restorations. Purpose: The purpose of this study was to evaluate, by examination of periapical radiographs, whether the placement of intra-radicular posts in endodontically treated teeth may act as a risk factor for development of periapical lesions. Material and Methods: This case-control study analyzed periapical radiographs of 72 endodontically treated teeth with coronal restorations. All radiographs were obtained from a single private practice. Specimens were assigned to 2 groups: Group 1 (control) was composed of teeth without periapical lesions and Group 2 (case) was composed of teeth with periapical lesions. The number of teeth with and without posts in each group was recorded. Three calibrated examiners analyzed the radiographs visually under X4 magnification. Results: In Group 1, 28 (65.1%) out of 43 teeth were restored with posts. In Group 2, 24 (82.8%) out of 29 teeth had intra-radicular posts. The interpretation of chi-square test showed that these percentages were not significantly different (xΒ²=2.687; p=0.101). Odds ratio was 2.571 (0.815-8.118), which indicates that there was no statistically significant association between periapical lesions and posts. Conclusion: Intra-radicular posts placed in endodontically treated teeth were not a significant risk factor for development of periapical lesions in the practice where the cohort of patients was treated

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore