39 research outputs found

    Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20′N : ODP Hole 1274A

    Get PDF
    Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 153 (2007): 303-319, doi:10.1007/s00410-006-0148-6.ODP Leg 209 Site 1274 mantle peridotites are highly refractory in terms of lack of residual clinopyroxene, olivine Mg# (up to 0.92) and spinel Cr# (~0.5), suggesting high degree of partial melting (>20%). Detailed studies of their microstructures show that they have extensively reacted with a pervading intergranular melt prior to cooling in the lithosphere, leading to crystallization of olivine, clinopyroxene and spinel at the expense of orthopyroxene. The least reacted harzburgites are too rich in orthopyroxene to be simple residues of low-pressure (spinel field) partial melting. Cu-rich sulfides that precipitated with the clinopyroxenes indicate that the intergranular melt was generated by no more than 12% melting of a MORB mantle or by more extensive melting of a clinopyroxene-rich lithology. Rare olivine-rich lherzolitic domains, characterized by relics of coarse clinopyroxenes intergrown with magmatic sulfides, support the second interpretation. Further, coarse and intergranular clinopyroxenes are highly depleted in REE, Zr and Ti. A two-stage partial melting/melt-rock reaction history is proposed, in which initial mantle underwent depletion and refertilization after an earlier high pressure (garnet field) melting event before upwelling and remelting beneath the present-day ridge. The ultra-depleted compositions were acquired through melt re-equilibration with residual harzburgites.Funding for this research was provided by Centre National de la Recherche Scientifique-Institut National des Sciences de l’Univers (Programme Dynamique et Evolution de la Terre Interne)

    Trace element chemistry and U-Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps)

    Get PDF
    The U-Pb ages and the trace element content of zircon U-Pb along with major and trace element whole rock data on gabbroic dikes from the Lanzo lherzolitic massif, N-Italy, have been determined to constrain crustal accretion in ocean-continent transition zones. Three Fe-Ti gabbros were dated from the central and the southern part of the massif providing middle Jurassic ages of 161 +/- 2, 158 +/- 2 and 163 +/- 1 Ma, which argue for magmatic activity over few millions of years. Zircon crystals are characterized by high but variable Th/U ratios, rare earth element patterns enriched in heavy rare earths, pronounced positive Ce and negative Eu-anomalies consistent with crystallization after substantial plagioclase fractionation. The zircon trace element composition coupled with whole rock chemistry was used to reconstruct the crystallization history of the gabbros. A number of gabbros crystallized in situ, and zircon precipitated from trapped, intercumulus liquid, while other gabbros represent residual liquids that were extracted from a cumulus pile and crystallized along syn-magmatic shear zones. We propose a model in which the emplacement mechanism of gabbroic rocks in ocean-continent transition zones evolves from in situ crystallization to stratified crystallization with efficient extraction of residual liquid along syn-magmatic shear zones. Such an evolution of the crystallization history is probably related to the thermal evolution of the underlying mantle lithosphere

    Liquid line of descent of a basanitic liquid at 1.5 GPa: Constraints for metasomatic vein formation

    Get PDF
    The metasomatism observed in the oceanic and continental lithosphere is generally interpreted to represent a continuous differentiation process forming anhydrous and hydrous veins plus a cryptic enrichment in the surrounding peridotite. In order to constrain the mechanisms of vein formation and potentially clarify the nature and origin of the initial metasomatic agent, we performed a series of high-pressure experiments simulating the liquid line of descent of a basanitic magma differentiating within continental or mature oceanic lithosphere. This series of experiments has been conducted in an end-loaded piston cylinder apparatus starting from an initial hydrous ne-normative basanite at 1.5 GPa and temperature varying between 1,250 and 980°C. Near-pure fractional crystallization process was achieved in a stepwise manner in 30°C temperature steps and starting compositions corresponding to the liquid composition of the previous, higher-temperature glass composition. Liquids evolve progressively from basanite to peralkaline, aluminum-rich compositions without significant SiO2 variation. The resulting cumulates are characterized by an anhydrous clinopyroxene + olivine assemblage at high temperature (1,250-1,160°C), while at lower temperature (1,130-980°C), hydrous cumulates with dominantly amphibole + minor clinopyroxene, spinel, ilmenite, titanomagnetite and apatite (1,130-980°C) are formed. This new data set supports the interpretation that anhydrous and hydrous metasomatic veins could be produced during continuous differentiation processes of primary, hydrous alkaline magmas at high pressure. However, the comparison between the cumulates generated by the fractional crystallization from an initial ne-normative liquid or from hy-normative initial compositions (hawaiite or picrobasalt) indicates that for all hydrous liquids, the different phases formed upon differentiation are mostly similar even though the proportions of hydrous versus anhydrous minerals could vary significantly. This suggests that the formation of amphibole-bearing metasomatic veins observed in the lithospheric mantle could be linked to the differentiation of initial liquids ranging from ne-normative to hy-normative in composition. The present study does not resolve the question whether the metasomatism observed in lithospheric mantle is a precursor or a consequence of alkaline magmatism; however, it confirms that the percolation and differentiation of a liquid produced by a low degree of partial melting of a source similar or slightly more enriched than depleted MORB mantle could generate hydrous metasomatic veins interpreted as a potential source for alkaline magmatism by various authors
    corecore