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Abstract

The ability of euryhaline Mozambique tilapia to tolerate extreme environmental salinities makes it an excellent model for
investigating iono-regulation. This study aimed to characterize and fill important information gap of the expression levels of
key ion transporters for Na+ and Cl2 in the gill and esophageal-gastrointestinal tract of Mozambique tilapia acclimated to
freshwater (0 ppt), seawater (30 ppt) and hypersaline (70 ppt) environments. Among the seven genes studied, it was found
that nkcc2, nkcc1a, cftr, nka-a1 and nka-a3, were more responsive to salinity challenge than nkcc1b and ncc within the
investigated tissues. The ncc expression was restricted to gills of freshwater-acclimated fish while nkcc2 expression was
restricted to intestinal segments irrespective of salinity challenge. Among the tissues investigated, gill and posterior
intestine were found to be highly responsive to salinity changes, followed by anterior and middle intestine. Both esophagus
and stomach displayed significant up-regulation of nka-a1 and nka-a3, but not nkcc isoforms and cftr, in hypersaline-
acclimated fish suggesting a response to hypersalinity challenge and involvement of other forms of transporters in iono-
regulation. Changes in gene expression levels were partly corroborated by immunohistochemical localization of transport
proteins. Apical expression of Ncc was found in Nka-immunoreactive cells in freshwater-acclimated gills while Nkcc co-
localized with Nka-immunoreactive cells expressing Cftr apically in seawater- and hypersaline-acclimated gills. In the
intestine, Nkcc-stained apical brush border was found in Nka-immunoreactive cells at greater levels under hypersaline
conditions. These findings provided new insights into the responsiveness of these genes and tissues under hypersalinity
challenge, specifically the posterior intestine being vital for salt absorption and iono-osmoregulation in the Mozambique
tilapia; its ability to survive in hypersalinity may be in part related to its ability to up-regulate key ion transporters in the
posterior intestine. The findings pave the way for future iono-regulatory studies on the Mozambique tilapia esophageal-
gastrointestinal tract.
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Introduction

The euryhaline teleost, Oreochromis mossambicus also known as the

Mozambique tilapia, can be acclimated to extreme environmental

salinities ranging from freshwater (FW), seawater (SW) to

hypersaline water (HSW) up to four-fold the salinity of SW

[1,2]. In order to maintain body fluid homeostasis, the tilapia has

to cope with the iono-osmoregulatory challenges exerted by these

extreme environmental salinities by dynamically regulating ion

and water balance. In hypo-osmotic FW environments, passive

osmotic water gain needs to be minimized and excess water

removed from the body, while the loss of salt needs to be

minimized if not replaced by active sequestering from the

environment. In hyper-osmotic SW environments, osmotic water

loss needs to be reduced if not replaced by ingestion of SW and the

excess salt gain needs to be actively excreted from the body. These

iono-osmoregulatory challenges escalate dramatically as environ-

mental salinity increases beyond SW into hypersaline levels where

only few teleost species, including several tilapias, have evolved the
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extraordinary capability to iono-osmoregulate in HSW environ-

ments [3–5].

Studies have been conducted to investigate the iono-osmoreg-

ulatory mechanisms of gills in tilapia. Most studies have focused

mainly on isoforms of key ion transporters such as Na+/K+-

ATPase (Nka), Na+:K+:2Cl2 cotransporter (Nkcc), Na+:Cl2

cotransporter (Ncc), cystic fibrosis transmembrane regulator (Cftr)

Cl2 channel and several ion exchangers within the gills by

comparing their expression at both gene and/or protein levels in

FW and SW environments [6–9]. However, there is little

information with regards to the expression levels of these ion

transporters in the tilapia gill under HSW environments and even

much less is known in the esophageal-gastrointestinal (EGI) tract of

tilapia acclimated to different environmental salinities. The

quantitative changes in gene expression levels of these ion

transporters in gills acclimated to HSW has yet to be determined,

although biochemical and physiological changes in gills had been

investigated [10–12], while quantitative morphological changes of

gill ionocytes in tilapia acclimated to HSW had been studied using

ultrastructural [6] and immunohistochemical [9] approaches.

As for the tilapia EGI tract, there has been limited information

with regards to its role in iono-osmoregulation and the expression

of these key transporters along the different segments of the EGI

tract in FW, SW and HSW acclimated fish. The EGI tract plays

an important osmoregulatory role in compensating water loss in

SW environment by selective salt and water uptake from ingested

SW [13]. However, despite its crucial iono-osmoregulatory role,

the EGI tract in teleosts has generally received much lesser

attention than the gill in iono-osmoregulation studies [14]. In

tilapia, the EGI tract, in part or in whole, has been studied in

salinity challenge experiments with regards to glucose transport

[15,16], total carbon dioxide concentration [17], endocrine

responses [18–20], and cell proliferation-apoptosis [21]. Gene

expression of ion transporters has been detected for ‘intestine’ as a

whole organ in tilapia acclimated in FW and SW [7] but not in

their morpho-functional segments. This warrants the present study

because the tilapia EGI tract is known to be morpho-functionally

divided [22], hence we hypothesize that the different segments of

the EGI tract would display different iono-osmoregulatory levels.

This study aimed to fill in the knowledge gap on the expression

of selected key ion transporters involved in the ion regulation of

the main ions Na+ and Cl2 in gill and EGI tract of the euryhaline

Mozambique tilapia model acclimated in FW-, SW- and HSW-

environments. We have cloned and quantified the gene expression

of seven major ion transporters (nkcc1a, nkcc1b, nkcc2, ncc, cftr, and

nka-a1, and nka-a3) in gills and EGI tract of tilapia acclimated in

FW (0 ppt), SW (30 ppt) and HSW (up to 70 ppt). These genes

were selected as they are the key ion transporters known to be

critical for Na+ and Cl2 ion regulation in FW and SW

environments. The expression profiles of these genes were assessed

in gills and five segments of EGI tract including the esophagus, the

stomach, the anterior intestine (AI), the middle intestine (MI), and

the posterior intestine (PI) to gain insight into the iono-

osmoregulatory roles of these regions under hypersalinity stress.

In addition, we have also performed immunohistochemical

staining for localization of Nkaa, Nkcc/Ncc, and Cftr in gill and

anterior and posterior intestine. We observed gene expression

profiles that were similar, as well as those that were distinct from

each other in the gills and the EGI tract of fish acclimatized to

different salinities. Based on the known functions of these

transporters and their localizations in epithelial membrane, these

findings provide new insights into Na+ and Cl2 ion regulation in

gills and along the EGI tract of tilapia in FW, SW and HSW-

environments.

Materials and Methods

Ethics statement
Animal procedures adopted in this study were approved by the

Institutional Animal Care and Use Committee of the National

University of Singapore (IACUC 098/10).

Fish and experimental protocol
Mozambique tilapia (Oreochromis mossambicus) measuring 10–

15 cm in total length were purchased from a local commercial fish

farm and were maintained in 200-L tanks with recirculating

dechlorinated tap water (FW) with gentle aeration at 25–26uC
under 12 h light: 12 h dark photoperiod for at least 2 weeks before

experiments. Fish were fed twice daily with commercial fish food

(Hikari cichlid bio-gold, Kyorin food Ind. Ltd.) until one day

before sampling. Fish were randomly assigned into 3 groups.

Group I was maintained in FW as control group. Group II and III

were acclimated stepwise to natural seawater (SW, 30 ppt) over

five transfers (10 ppt, 15 ppt, 20 ppt, 25 ppt, 30 ppt), with two

days to allow for acclimation at each stage of increasing salinity.

Group II was then maintained for about three weeks in SW until

sampling. Meanwhile, group III tilapia were acclimated stepwise

from SW to hypersaline water (HSW, 70 ppt) over eight transfers

(35 ppt, 40 ppt, 45 ppt, 50 ppt, 55 ppt, 60 ppt, 65 ppt, 70 ppt),

with two days allowed for acclimation at each stage, and finally

maintained at 70 ppt for four days before sampling. The entire

step-wise acclimation from SW to HSW took about 3 weeks and

thereafter fish from FW, SW and HSW were sampled on the same

day. Water with salinities below 30 ppt were prepared by mixing

dechlorinated tap water with natural SW, while water above

30 ppt to HSW were prepared by adding sodium chloride

(Schedelco, Malaysia) to SW. Salinity was determined using a

light refractometer.

Fish were anaesthesized with 0.1% (v/v) 2-phenoxyethanol

(Sigma-aldrich, USA) before tissue sampling. Gill filaments were

excised, while the esophagus, stomach, anterior intestine (AI),

middle intestine (MI), and posterior intestine (PI) were dissected

and placed in RNAlater (Ambion, USA) before cutting the tissues

into smaller pieces. The cut tissue samples were then immediately

snap-frozen in liquid nitrogen and stored at 280uC until used. For

histological analysis, tissues were fixed in 4% (w/v) paraformal-

dehyde in phosphate-buffered saline for immunohistochemical

staining.

RNA extraction and cDNA synthesis
Total RNA isolation from tilapia gill or various segments of EGI

tract was performed using TRIzol reagent (Invitrogen, USA)

according to the manufacturer’s protocols. RNA purity and

quantity was measured using Nanodrop ND-2000 spectropho-

tometer (Thermo Fisher, USA). RNA were treated with DNase I,

amplification grade (Invitrogen, USA) to remove any contaminat-

ing genomic DNA. First-strand cDNA was synthesized by reverse-

transcription from 3 mg of total RNA using SuperScript II reverse

transcriptase (Invitrogen, USA) with oligo(dT)20.

Cloning and sequencing of construct
The full-length cDNAs encoding Nkcc1a (GenBank accession

No. AY513737; 3456 bp), Nkcc1b (AY513738; 3288 bp), Nkcc2

(AY513739; 3126 bp) and Ncc (EU518934; 3003 bp) and partial

sequences of Nka-a1 (U82549; 837 bp from nucleotide position

142 to 978 bp), Nka-a3 (AF109409; 1020 bp; from nucleotide

position 205 to 1224 bp), Cftr (AB601825; 1206 bp; from

nucleotide position 1 to 1206 bp) have been PCR amplified from

first-strand cDNA samples. The amplified genes were digested
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with the restriction enzyme Xba I and Xho I and then ligated to

the similarly digested vector pBluescript II KS(-) (Agilent

Technologies; Palo Alto, CA, USA). These cloned genes were

sequenced using ABI PRISM 377 DNA Sequencer (Applied

Biosystems, Carlsbad, CA, USA) and have been confirmed by

alignment with their respective sequences downloaded from NCBI

database. The primers used for these constructs are listed in

supporting information Table S1.

Quantitative real-time PCR
Absolute quantification real-time PCR was carried out as

described previously [23] to determine the mRNA levels of tilapia

nkcc1a, nkcc1b, nkcc2, ncc, nka-a1, nka-a3 and cftr. Real-time PCR

was performed on a StepOnePlusTM Real-Time PCR system

(Applied Biosystems, USA) in a 10 ml reaction volume using 50 ng

cDNA, 200 nM forward and reverse primers and 5 ml of Express

SYBR GreenER qPCR supermix with premixed ROX (Invitro-

gen, USA). The concentration of the cDNA samples and plasmid

cDNA constructs were determined using Nanodrop ND-2000

spectrophotometer (Thermo Fisher, USA). The copy numbers of

the plasmid cDNA constructs were calculated according to the

molecular weight of the plasmid (average value = 660/bp) and

then converted into the copy numbers using Avogadro’s number

(1 mol = 6.02261023 molecules) based on their respective concen-

trations. Serial ten-fold dilutions (from 107 to 101 copies/ml) of the

plasmid cDNA constructs were run in triplicate to generate

standard curves. Each of the tissue sampled from 8 individual fish

for each treatment condition (FW, SW, and HSW) was used

individually for real-time PCR quantification for each gene (n = 8).

Cycling conditions were 95uC for 20 s followed by 40 cycles of

95uC for 3 s and 60uC for 30 s. Amplification was followed by a

melting curve analysis to confirm the specificity of the PCR

reaction. Standard curves were obtained from plotting CT on the

y-axis and the natural log of concentration (copies/ml) on the x-

axis. The unknown quantity of transcript in a sample was

determined from the linear regression line derived from the

standard curve and the copy numbers per 50 ng cDNA were

determined. The primers used for quantitative real-time PCR are

listed in supporting information Table S2.

Immunohistochemistry
Gill and gastro-intestinal tissues were excised and fixed in 4%

paraformaldehyde (PFA) in phosphate buffered saline (PBS)

(pH 7.4) for 24 h at 4uC, processed for paraffin embedding, and

sectioned as described by Wilson et al. [24]. Following dewaxing

and rehydrations, antigen retrieval was performed using 0.05%

citraconic anhydride (pH 7.3) for 30 min at 100uC [25] and

1%SDS/PBS for 5 min [26] and thoroughly rinsed. Sections were

then blocked with 5% normal goat serum (NGS)/1% bovine

serum albumin (BSA)/0.05% Tween 20-phosphate buffered saline

(TPBS; pH 7.4) for 15 min and incubated with either mouse

monoclonal anti-Cftr antibody (Clone 24-1; R&D systems) or

monoclonal anti-Nkcc/Ncc antibody (clone T4; DSHB [27]) with

a rabbit anti-Na+/K+ ATPase a subunit polyclonal antibody

(1:500 [24]) diluted in 1:200, 1:100 and 1:500, respectively in 1%

BSA/TPBS (0.05% Tween-20/PBS, pH 7.4)/0.05% sodium

azide overnight at 4uC in humidity chambers. Negative control

incubations were performed simultaneously under the same

conditions, using isotyped hybridoma culture supernatant (clone

J3), and either preimmune rabbit serum or antibody pre-absorbed

with excess peptide (pre-absorbed overnight at 4uC on an orbital

shaker) equivalently diluted as the primary antibodies. Secondary

incubations were performed with goat anti-mouse Alexa Fluor 488

and goat anti-rabbit Alexa Fluor 568 conjugated secondary

antibodies (Invitrogen S.A., Barcelona, Spain) diluted 1:400 in

1%BSA/TPBS, for 1 h at 37uC. Nuclei were counterstained with

49,6-Diamidino-2-phenylindole (DAPI) and coverslips were

mounted with 1:1 glycerol : PBS, pH 7.5 and observed on an

epifluorescence microscope (Leica Microsystems DM6000 B,

Germany). Images of fluorescent staining were captured with a

Leica DFX340 camera, along with the corresponding differential

interference contrast (DIC) image. Plates were assembled using

Adobe Photoshop CS3 software, and images enhanced while

maintaining the integrity of the data.

Tissue fluorescent staining was quantified using image analysis

software (SigmaScanPro v.5 SPSS, Chicago IL USA). The use of

image analysis software for quantifying immunofluorescent signal

in tissue section has been reported previously [28]. Images for a

given antibody were collected under identical capture conditions

from randomly selected non-contiguous fields. The results are

expressed as a ratio of the luminosity of Alexa 488 (Nka) or Alexa

568 (Nkcc/Ncc) to DAPI (nuclei) staining within a total individual

field of 0.307 mm2; the DAPI (nuclei) staining is used as a proxy

for tissue area to correct for differences between fields. This is

subsequently referred as ‘normalized luminosity index’. A total of

90 images were analyzed per tissue (gill, anterior intestine and

posterior intestine).

Statistical analysis
The gene expression data and immunohistochemical data were

analyzed statistically by one-way analysis of variance (ANOVA)

followed by post-hoc Duncan’s multiple range test using SPSS

Statistics (IBM, USA). A value of P,0.05 was considered to be

statistically significant in the analysis.

Results

Changes in gene expression levels of selected key ion
transporters in gills and EGI tract of FW-, SW- and HSW-
acclimated fish

The absolute mRNA expression levels of nkcc1a, nkcc1b, nkcc2,

ncc, cftr, and nka-a1 and nka-a3 were determined in the gills and five

different segments of EGI tract including the esophagus, stomach,

AI, MI, and PI in fish acclimated to FW, SW (30 ppt), and HSW

(70 ppt) environments. The expression of each gene in each tissue

were compared between FW-, SW- and HSW-acclimated fish to

determine if their expression levels within each tissue type were

affected by salinity challenge (Figure 1). The relative expression

fold-change was approximated from the expression levels.

Gene expression of nkcc1a and nkcc1b
In the gill, the expression of nkcc1a was significantly (P,0.05)

up-regulated in SW- and HSW-acclimated fish when compared to

FW-acclimated fish (Figure 1a). In the EGI tract of SW-

acclimated fish, nkcc1a expression significantly (P,0.05) decreased

2-fold in the PI but did not show significant (P.0.05) change albeit

slight increase in other segments (Figure 1a). However, upon

greater salinity challenge in HSW-acclimated fish, nkcc1a was

significantly up-regulated in the esophagus, and all the three

intestinal segments (Figure 1a). The mean expression of nkcc1a

significantly (P,0.05) increased 35- and 50-fold in the respective

gills of SW- and HSW-acclimated fish when compared to the gill

of FW-acclimated fish. Interestingly, the expression of nkcc1a in

FW-acclimated fish was most abundant in the stomach (about 6 to

40-fold higher than other tissues) and remained at similar levels in

the SW- and HSW-acclimated fish, suggesting that its high

expression in the stomach does not respond to salinity challenge

(Figure 1a). The findings indicate that nkcc1a is highly responsive
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to salinity challenge in the gills and moderately responsive in the

esophagus and intestine.

No significant (P.0.05) changes of branchial nkcc1b expression

were detected in fish acclimated SW or HSW when compared to

FW (Figure 1b) suggesting that nkcc1b, unlike nkcc1a, is not

responsive to salinity challenge in the gill. In the EGI tract,

however, expression of nkcc1b was significantly (P,0.05) down-

regulated in the stomach of SW- and HSW-acclimated fish, as well

as in the AI of SW-acclimated fish, but was significantly (P,0.05)

up-regulated in the MI and the PI of HSW-acclimated fish

(Figure 1b). Among the intestinal segments, nkcc1b transcript was

most abundant in the PI irrespective of salinity (Figure 1b). The

findings indicate that nkcc1b is moderately responsive to salinity

challenge in the EGI tract.

Gene expression of nkcc2
The expression of nkcc2 was detectable at very low levels in the

tilapia gills, esophagus and stomach, but was abundantly expressed

in the intestinal segments of FW-, SW- and HSW-acclimated fish

(Figure 1c). In FW-acclimated fish, nkcc2 expression was detected

most abundantly in the PI, about 40-fold and 300-fold higher than

the AI and MI, respectively. In SW-acclimated fish, the expression

of nkcc2 increased significantly (P,0.05) to 14- and 51-fold in the

AI and MI, respectively, but was significantly (P,0.05) down-

regulated 4-fold in the PI, when compared to FW-acclimated fish

(Figure 1c). When challenged with greater salinity, nkcc2

expression was significantly (P,0.05) up-regulated 70-, 135- and

2.5-fold in the respective AI, MI and PI, of HSW-acclimated fish

when compared with the FW-acclimated fish (Figure 1c). These

findings indicate that nkcc2 is abundantly expressed in the EGI

tract and is highly responsive to salinity challenge.

Gene expression of ncc
The highest abundance of ncc transcript was detected in the gills

of FW-acclimated fish but was significantly (P,0.05) down-

regulated 555- and 1200-fold in SW and HSW-acclimated fish,

respectively (Figure 1d). Low levels of ncc transcripts were also

detected in the esophagus of FW-acclimated fish which was again

significantly (P,0.05) down-regulated in SW- and HSW-accli-

mated fish (Figure 1d). The expression of ncc in the EGI tract

remained very low with no significant (P.0.05) changes in fish

acclimated to all three environments suggesting that it is not

responsive to salinity challenge in the stomach and intestine. The

marked down-regulation of branchial ncc expression in SW and

HSW environments indicates that the expression of ncc is sensitive

to salinity challenge in the gill and the encoded ion transporter is

mainly required in low ionic, hypo-osmotic FW environment.

Figure 1. Gene expression of sodium (potassium) chloride (nkcc/ncc) cotransporters. Expression levels of nkcc1a (a), nkcc1b (b), nkcc2 (c), ncc
(d), in the gills and EGI tract of tilapia acclimated to freshwater (FW), seawater (SW) and hypersaline water (HSW). Each histogram bar represents the
mean 6 s.d. of the expression levels (log10 copies of transcript per 50 ng cDNA). Expression levels labeled with different lowercase alphabets are
significantly different (one-way ANOVA followed by Duncan’s post-hoc test; P,0.05) within the same tissue.
doi:10.1371/journal.pone.0087591.g001
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Gene expression of cftr
The expression of cftr was low in the FW- acclimated gill but was

significantly (P,0.05) up-regulated by 190- and 435–fold in the gill

acclimated to SW and HSW environments, respectively

(Figure 2a). In the EGI tract, higher expression of cftr was

consistently observed in the intestinal segments than the esophagus

and the stomach regardless of salinity (Figure 2a). When

compared to FW-acclimated fish, cftr expression was significantly

(P,0.05) up-regulated 2-fold and 6-fold in the PI of SW- and

HSW-acclimated fish, respectively, as well as significantly (P,

0.05) up-regulated 4-fold in the AI and 2-fold in the stomach of

HSW-acclimated fish (Figure 2a). The findings indicate that cftr is

highly responsive to salinity challenge in the gills and moderately

responsive in the EGI tract, particularly in the AI and the PI.

Gene expression of nka-a1 and nka-a3
The expression of nka-a1 and nka-a3 were abundant in all the

tissues investigated, and the expression level of nka-a1 is about 10-

fold higher than nka-a3 in the corresponding tissues and

environments (Figure 2b and 2c). In the gills, nka-a1 expression

was significantly (P,0.05) up-regulated 20- and 50-fold in the SW-

and HSW-acclimated fish, respectively, when compared to the

FW-acclimated fish (Figure 2b). Likewise, branchial nka-a3

significantly (P,0.05) increased 17- and 13-fold in the SW- and

HSW-acclimated fish, respectively, when compared to the FW-

acclimated fish (Figure 2c). In the EGI tract, the expression of

nka-a1 was significantly (P,0.05) up-regulated in the esophagus (3-

fold), stomach (2-fold), AI (33-fold) and MI (5-fold) of HSW-

acclimated fish, but significantly (P,0.05) down-regulated in the

PI (4-fold) of SW-acclimated fish, when compared to the FW-

acclimated fish (Figure 2b). As for nka-a3, its expression was

significantly (P,0.05) up-regulated in the esophagus (3-fold) of

SW-acclimated fish, as well as in the esophagus (4-fold), stomach

(7-fold), AI (4.5-fold), MI (3-fold) and PI (2.5 fold) of HSW-

acclimated fish, when compared to FW-acclimated fish (Figure 2c).

The findings suggest that both nka-a1 and nka-a3 are highly

responsive to salinity challenge in the gill and moderately

responsive in the EGI tract.

Gene expression profiles of selected key ion transporters
in gills and EGI tract of FW-, SW- and HSW-acclimated fish

To gain overall perspective and derive significance of the

expression profiles for the seven genes within the six tissues with

regards to salinity challenge, we further condensed our expression

data into a heatmap (Figure 3) and transferred the statistical

significance (P,0.05) represented by different alphabets from

Figure 1 and Figure 2 into Figure 3. We then scored for the

number of significant (P,0.05) differences. In the case of two-

group difference, e.g. if a gene expression in HSW and/or SW is

significantly (P,0.05) different when compared with FW only, an

alphabet ‘b’ is assigned in the respective HSW and/or SW cells

while FW is assigned alphabet ‘a’. In the case of three-group

difference i.e. if a gene expression in HSW is significantly different

when compared to FW and SW, where SW is also significantly

different from FW, alphabet ‘b’ is assigned in the SW cell and

alphabet ‘c’ is assigned in the HSW cell while FW is assigned

alphabet ‘a’. Alphabets ‘a’, ‘b’ and ‘c’ are scored as 0, 1 count and

2 counts of significant difference, respectively. By totaling the

number of significant differential expression for each tissue and

each gene, we were able to determine the genes that were

deregulated most frequently and the tissues that had the highest

number of deregulated genes in response to salinity challenge.

Among the seven genes investigated, nkcc2, nkcc1a, cftr, nka-a1

and nka-a3, have the highest score (8–9) for significant differential

expression when compared to ncc and nkcc1b which respectively

have 4 and 5 significant differential expression in the tissues that

were investigated (Figure 3). Therefore, nkcc2, nkcc1a, cftr, nka-a1

and nka-a3, were genes that were more responsive to salinity

challenge in these tissues when compared to nkcc1b and ncc.

Among the tissues investigated with regards to the expression of

these genes, the gill and PI both scored 12 significant differential

expression followed by 8 for AI and 7 for MI, while esophagus and

stomach scored 6 and 5 significant differential expression,

respectively (Figure 3). In the gill of FW-acclimated fish, ncc

and nka-a1 were highly expressed while the transcripts for nkcc2

and cftr were almost non-detectable.

In the gills of SW-acclimated fish, the ncc expression was

significantly down-regulated to very low levels while transcripts for

nka-a1, nka-a3, cftr and nkcc1a were increased significantly. Similar

profiles were observed in the gill of HSW-acclimated fish, with

significantly higher branchial nka-a1 and cftr expressions than SW-

acclimated fish. In the PI of FW-acclimated fish, nkcc2 and nka-a1

transcripts were highly abundant followed by nkcc1b, cftr and nka-

a3 transcripts which were moderately abundant. In the PI of SW-

acclimated fish, the expression of cftr was up-regulated while

nkcc1a, nkcc2 and nka-a1 were down-regulated when compared to

FW-acclimated fish. In HSW environment, the PI was highly

responsive with the expression of nkcc1a, nkcc1b, nkcc2 and cftr

significantly up-regulated when compared to SW- and FW-

acclimated fish.

Both AI and MI shared similar expression profiles with

significant up-regulation of nkcc2 in SW-acclimated fish, and

significant up-regulation of nkcc1a, nkcc2, nka-a1 and nka-a3 in

HSW-acclimated fish. In the esophagus, ncc was significantly

down-regulated and nka-a3 was significantly up-regulated in SW-

and HSW-acclimated fish, while nka-a1 and nkcc1a were signifi-

cantly up-regulated in the HSW-acclimated fish when compared

to FW-acclimated fish. In stomach, only nka-a1, nka-a3 and cftr

were significantly increased in HSW-acclimated fish when

compared to FW-acclimated fish. Taken together, the gill and

PI followed by AI and MI were most responsive to salinity

challenge while esophagus and stomach was the least responsive

hence highlighting the relative importance of these genes in their

iono-regulatory roles within these tissues.

Immunohistochemical staining of selected key ion
transporters in gills and intestine of FW-, SW- and HSW-
acclimated fish

We further performed immunohistochemical staining on the

gill, AI and PI as representative tissues that were more responsive

to salinity challenge (Figure 4 and 5). The tilapia gill has strong

Nka immunoreactive cells located primarily in the filament

epithelium in an apparent cytosolic location (Figure 4). This

pattern is related to the extensive tubular system which is in

continuity with the basolateral membrane of these cells [29]. In

FW-acclimated fish, Ncc is localized apically in a subpopulation of

these cells (Figure 4a and 4a9). This apical staining of Ncc is not

present in the gills of SW- or HSW-acclimated fish. Under

increasing salinity, Nkcc is co-localized with Nka associated with

the basolateral tubular system and the intensity of Nkcc staining

increased with salinity (Figure 4a–4c and 4a9–4c9). Likewise,

Nka-Nkcc immunoreactive cells in the gills appeared to have

increased noticeably in size and numbers with increasing salinity.

Indeed the normalized luminosity indices for Nkcc/Ncc and Nka

immunostaining were significantly (P,0.005) higher in the gills of

SW- and HSW-acclimated fish when compared to FW-acclimated
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fish (Table 1). Interestingly, a small but distinct population of Nka

immunoreactive cells which lacked Nkcc staining but are closely

associated with Nka-Nkcc immunoreactive cells became more

apparent in the gill of HSW-acclimated fish (Figure 4c and 4c9).

Cftr is localized to the apical crypt membrane of Nka-immuno-

reactive cells in the gills of SW- and HSW-acclimated fish but not

in FW-acclimated fish (Figure 4d–f and 4d9–f9).

In the intestine, Nka immunoreactivity is found in the

basolateral membrane of enterocytes in both the AI (Figure 5a–
5e) and PI (Figure 5f–5h). Although statistically not significant,

an increasing trend with salinity was observed in the normalized

luminosity index for Nka in the AI and PI (Table 1). Nkcc/Ncc

staining is strongly associated with the enterocyte brush border in

both the AI (Figure 5a–5d) and PI (Figure 5f–5h). A

significantly (P,0.05) higher normalized luminosity index for

Nkcc/Ncc immunostaining was observed in the AI with increasing

salinity and in the PI of HSW-acclimated fish when compared

with FW-acclimated fish (Table 1). Cftr immunoreactivity is only

consistently detected in the AI of FW fish associated with a small

population of cells in the intestinal epithelium (Figure 5e).

Discussion

We have quantified expression levels of seven major ion

transporters (nkcc1a, nkcc1b, nkcc2, ncc, cftr, and nka-a1, and nka-

a3) and performed immunohistochemical localization of the

encoded proteins that are responsible for sodium and chloride

ion regulation in gills and the intestine of tilapia acclimated to FW,

Figure 2. Gene expression of cystic fibrosis transmembrane conductance regulator (cftr) and sodium potassium ATPases (nka). Expression
levels of cftr (a), nka-a1 (b), nka-a3 (c) in gills and EGI tract of tilapia acclimated to freshwater (FW), seawater (SW) and hypersaline water (HSW). Each
histogram bar represents the mean 6 s.d. of the expression levels (log10 copies of transcript per 50 ng cDNA). Expression levels labeled with different
lowercase alphabets are significantly different (one-way ANOVA followed by Duncan’s post-hoc test; P,0.05) within the same tissue.
doi:10.1371/journal.pone.0087591.g002

Figure 3. Gene expression profiles in gills and gastro-intestinal tract of tilapia acclimated different salinities. Heatmap representing
quantity (log10 copies per 50 ng cDNA) of nkcc1a, nkcc1b, nkcc2, ncc, cftr, nka-a1, and nka-a3 in the gills and EGI tract segments, including the
esophagus, stomach, anterior intestine (AI), middle intestine (MI), and posterior intestine (IG) of tilapia acclimated freshwater (FW), seawater (SW) and
hypersaline water (HSW). Different alphabets indicates significant (P,0.05) differential gene expression between the salinity conditions (refer to text
for the scoring system) within a tissue.
doi:10.1371/journal.pone.0087591.g003
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SW and HSW environments. Based on the gene expression and

immunohistochemical findings from the present study as well as

other studies, we discuss our findings to provide perspective on

their roles in regulating sodium and chloride fluxes in the gill and

EGI tract under different salinity environments.

In FW environment, fish gain excess water from, and lose salt

to, the low ionic and hypo-osmotic environment. With regards to

iono-regulation, the fish needs to reduce and replace salt loss by

actively sequestering ions from the low-salt environment via the

gills and absorption from ingested food via the EGI tract. In the

FW-acclimated gill, this is partly achieved with the high expression

of ncc, nka-a1, and nka-a3 as determined in this study. The Ncc

located in the apical membrane sequester Na+/Cl2 from the

environment to compensate for the passive losses [7,8]. The

basolaterally located Nka isoforms would transport the 3 Na+

outward into the plasma in exchange of 2 K+ inward thus

generating a low intracellular Na+ environment that would

provide a driving force for the apical Ncc to cotransport Na+

and Cl2 into the cell. The relatively low expression of nkcc1a and

nkcc1b in the gill of FW-acclimated fish may correspond to some of

the cells that are weakly stained with basolateral Nkcc co-localized

with Nka (Figure 4a9).

In SW and HSW environments, fish lose water to, and gain salt

from, the high ionic and hyper-osmotic environment. The SW-

and HSW-acclimated fish need to replace water loss by imbibing

salt water and absorbing the salt and water via the EGI tract,

whereby water is retained in the body and excess salt is extruded

via the gill. In both SW- and HSW-acclimated gills, our data

showed that ncc is down-regulated markedly since apical absorp-

tion of salt is no longer needed, while nka-a1, nka-a3, nkcc1a, and

cftr are up-regulated to facilitate active salt extrusion. Salt extrusion

via the gill will be against an increasing electrochemical gradient

hence energetically costly when fish are acclimating in SW and

HSW environments. Our findings agree with the well-accepted

model for active salt extrusion in SW-acclimated gills [30,31]. The

basolateral Nkcc1 is responsible for co-transporting Na+, K+ and 2

Cl2 from the plasma into the gill ionocytes utilizing the low

intracellular Na+ gradient generated by Nka. The Na+ is pumped

back into the extracellular space via the basolateral Nka while the

Cl2 exits the cell via the apical Cftr into the external environment

down its electrochemical gradient, which in turn generates a

positive trans-epithelial electrical potential (TEP) that will drive the

extracellular Na+ to exit into the external environment via leaky

paracellular tight junctions between the ionocytes and neighbour-

ing accessory cells [30]. This further explains the increase in nka-

a1, cftr and nkcc1a in HSW-acclimated gills because the encoded

proteins are required to increase active Cl2 excretion hence

increasing TEP when salinity was increased from 30 ppt (SW) to

70 ppt (HSW). Our immunohistochemical analysis corroborated

to a certain extent with the gene expression data indicating

significant increases of normalized luminosity indices for Nkcc and

Nka in the gills of fish-acclimated to SW and HSW when

compared to FW (Table 1). Moreover, although not quantified,

when salinity increased a noticeable increase in size and/or

amount of cells expressing these proteins was apparent as shown in

these representative micrographs (Figure 4a–4c; and 4d–4f). As

for the distinct small population of Nka immunoreactive cells

which lacked Nkcc staining in gill of HSW-acclimated fish

(Figure 4c and 4c9), although we do not know their roles and

if they are discrete cell types or merely transitional maturing

mitochondrion-rich cells, it is clear to us that they became more

apparent hence induced by acclimation in HSW environment.

Increase in the number and size of different subtypes of ionocytes

in the gills with increasing salinity had been well documented in

tilapia [6–9].

In the EGI tract of fish, imbibed SW is first desalinated in the

esophagus. The entry of Na+ and Cl2 could involve combination

of Na+/H+ (Nhe) and Cl2/HCO3
2 exchangers which are

reported to be vital in esophageal salt absorption while Nkcc2

plays a major role in the EGI tract [13]. This is accompanied by

the high nka-a1 and nka-a3 expressions in esophagus and stomach

which were significantly up-regulated in HSW-acclimated fish

(Figure 2b and 2c) suggesting a response to salinity challenge but

may be utilizing Nhe and Cl2/HCO3
2 exchangers for their iono-

Figure 4. Immunohistochemical localization of transporters in gills of tilapia acclimated to different salinities. Representative
micrographs of immunohistolocalization of Nka (green) with either Nkcc/Ncc (a–c; red) or Cftr (d–f; red) in the gills of tilapia acclimated to FW (a,d),
SW (b,e) or HSW (c,f). Co-localization of red and green fluorochromes results in yellow-orange staining. Higher magnification (106) of boxed areas in
(a–f) correspond to panels (a9–f9). Sections are counter stained with the nuclear stain DAPI and overlaid with the DIC image for tissue orientation.
Arrows indicate apical staining and arrowheads tubular system (basolateral) staining. Scale bar 100 mm (a–f), 10 mm (a9–c9).
doi:10.1371/journal.pone.0087591.g004
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regulatory roles since nkcc2 expression was very low (Figure 1c).

The absorption of Na+ and Cl2 in the intestine is likely facilitated

by the apical Nkcc2 which is abundantly expressed in the intestinal

segments (Figure 5). The apical Nkcc2 co-transports Na+, K+ and

2 Cl2 from the ingested food and fluid in the lumen into the

enterocytes utilizing the low intracellular Na+ gradient generated

by the basolateral Nka which were also abundantly expressed in

the intestine (Figure 5). Absorption of salt from the diet via the

EGI tract is essential for iono-regulation in FW-acclimated fish

[32] which may explain the high expression of nkcc2 and the

encoded protein in the intestinal segments especially the PI of FW-

acclimated fish detected in the present study (Figure 1c and 5f).
As euryhaline fish acclimate to a SW environment, its drinking

rate will increase 10- to 50-fold in order to compensate for water

losses [33]. Greater than 95% of the NaCl in the ingested SW is

absorbed in the EGI tract which in turn helps to drive the

absorption of 70–85% of the volume of ingested fluid while the

remaining volume is excreted via the rectum [4,13]. The high

expression of nkcc2 and/or the encoded protein has been reported

in the EGI tract of fish acclimated to FW and SW [34–36].

Consistent with our findings, nkcc2 was significantly up-regulated

in the AI and MI of SW-acclimated fish compared to FW-

acclimated fish reflecting its importance in the gut segments during

salinity challenge. The expression of nkcc2 in the AI, MI and PI

were at comparable high levels in SW-acclimated fish, although

nkcc2 appeared down-regulated in the PI of SW-acclimated fish

when compared to the very high transcript abundance in the PI of

FW-acclimated fish. In HSW-acclimated fish, we observed a

significant up-regulation of nkcc2 and nka-a1 in the respective AI,

MI and PI when compared to SW-acclimated fish. This was partly

corroborated with the significantly higher normalized luminosity

index for Nkcc in the AI of SW- and HSW-acclimated fish, but

only in PI of HSW-acclimated fish, when compared to FW-

acclimated fish (Table 1). While the normalized luminosity index

for Nka displayed an increasing trend with salinity, it was

statistically not significant in the AI and PI. These findings further

highlight the functional importance of the intestinal segments,

especially AI and PI, in iono-regulation when salinity increases

from 30 ppt to 70 ppt whereby salt load across the intestine has

been estimated to quadruple [3].

The presence of a Cftr paralogue to partly facilitate basolateral

exit of Cl2 was proposed by Grosell [13] and basolateral Cftr has

been detected in Dicentrachus labrax during ontogeny, presumably to

aid Cl2 exit [37]. This may explain the up-regulation of cftr in the

intestinal segments due to the increased Cl2 uptake in HSW-

acclimated fish. However, we could not detect basolateral Cftr

using an immunohistochemical method. This may be due to the

dispersed distribution of Cftr on the basolateral membrane that

diffuses the fluorescent signal unlike the more focal or concen-

trated localization of Cftr on the apical membrane that enhances

fluorescent signal detection. It may also be that the basolateral Cftr

expressed in the intestine of SW- and HSW- acclimated fish is of a

different isoform and is not recognizable by the monoclonal

antibody raised against a small specific epitope of apical Cftr.

Intestinal salt uptake is essential to facilitate water absorption

from ingested fluid to replace water loss to the external

hyperosmotic environment. It has been proposed that the exit of

Na+ and Cl2 into the lateral intercellular space between

enterocytes may create a localized hypertonic fluid that will draw

water osmotically from the luminal fluid into the plasma, in a

process known as solute-linked water transport hence indirectly

coupling salt uptake with water absorption [13,38]. Another

possible mechanism that coupled salt uptake with water absorption

involved a more direct role of NKCC isoform which could co-

transport salt together with water across membrane regardless of

osmotic gradients [39]. Using primary cultures from the human

corpus cilliare epithelium of the eye, it was shown that ion fluxes

mediated by NKCC1 could lead to water fluxes against osmotic

gradient and it was estimated about 570 water molecules are co-

transported with every cycle of 1 Na+, 1 K+ and 2 Cl2 by NKCC1

[40]. In our present study, it is not known whether the Nkcc

isoforms are indirectly [13,38] or directly [39,40] coupling salt and

water absorption in the fish intestine. Nevertheless, our study has

shown that the abundant expression of intestinal nkcc isoforms and

their up-regulation in fish acclimated to HSW clearly underscore

the necessity of salt uptake to facilitate water uptake hence further

emphasizing the role of Nkcc in coupling salt and water

absorption.

Since an organism will lose water to a hyperosmotic environ-

ment, the most important criterion to survive in hypersalinity is to

be able to replace water loss. The ability of the Mozambique

tilapia to significantly up-regulate intestinal key ion transporters,

especially in the posterior intestine, when challenged with

increasing extreme salinity is crucial to facilitate water uptake in

order to replenish the enormous water loss in hypersaline

environment. This may be one major factor that enables it to

Figure 5. Immunohistochemical localization of transporters in
anterior and posterior intestine of tilapia acclimated to
different salinities. Representative micrographs of immunolocaliza-
tion of Nka (green) with Nkcc/Ncc (red) (a–d, f–h) from FW (a, f), SW (b,
g) and HSW (c, h) acclimated tilapia. (d) A representative higher
magnification micrograph of Nkcc/Ncc staining of the brush border of
enterocytes with basolateral Nka staining from the anterior intestine of
SW-acclimated fish. (e) Apical Cftr (red) double labeling with Nka
(green) in the anterior intestine of a FW-acclimated fish. Panels (a–e) are
sections of anterior intestine (AI) while panels (f–h) are sections of
posterior intestine (PI). Sections are counter stained with the nuclear
stain DAPI and overlaid with the DIC image for tissue orientation. Scale
bar 100 mm (a–c, f–h); 25 mm (d,e).
doi:10.1371/journal.pone.0087591.g005
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survive in extreme salinity. In hypersaline environment, the

significant increase of key ion transporters in the anterior and

middle intestine (as observed in our data), while important, is likely

not sufficient to reduce salt content of imbibed hypersaline water

and facilitate water uptake to the levels that it can replenish the

enormous water loss. Therefore, the ability to up-regulate key ion

transporters significantly in the posterior intestine to further

facilitate water uptake becomes the determining factor that is

critical for its survival in 70 ppt. This ability may not be found in

other euryhaline fish. This hypothesis can further be tested using

the euryhaline Nile tilapia which is unable to survive in extreme

salinity and by investigating the responsiveness of the expression of

the key ion transporters in the intestinal tract especially in the

posterior intestine under increasing salinity in future study.

Conclusions

We have successfully characterized the expression of key ion

transporters for Na+ and Cl2 in the gill and EGI tract of the

euryhaline Mozambique tilapia model acclimated to FW, SW, and

HSW environments. The study provided new insights into the

responsiveness of these genes and their encoded proteins along the

different segments of the EGI tract of tilapia acclimated to

different salinity. With respect to the genes and tissues investigated,

we have identified the gill and PI as tissues most responsive to

salinity challenge followed by AI and MI, thus confirming the

hypothesis that different segments of the EGI tract display

different levels of iono-osmoregulatory significance. Despite being

an important iono-osmoregulatory organ especially in a salinity

challenging environment, little is known regarding the role of the

EGI tract in the Mozambique tilapia model. There is no

information on the expression of the selected key ion transporter

genes in different segments of the EGI tract under different salinity

conditions. This communication represents the first study that

provides detail absolute quantification of the expression of key ion

transporter genes in the EGI tract under three different salinity

conditions. The immunohistochemical staining performed in the

anterior and posterior intestines in this study is entirely new and

confirmed that, besides gene expression, some of the encoded

proteins are indeed expressed in these tissues. More importantly,

based on the gene expression profile of the nkcc2 and nka-a1, we

provided novel evidence that the posterior intestine, which

traditionally is thought to be mainly important for water

absorption, is also vital for salt absorption and iono-regulation.

The high expressions of nkcc2 and nka-a1 in posterior intestine in

FW suggest its crucial iono-regulatory role in salt absorption from

food in order to replenish salt loss in the FW environment. When

challenged with increasing salinity, it is a general notion that salt

absorption occurs at the anterior of the EGI tract to lower the salt

content of the ingested salt water in order to facilitate water

absorption in the posterior intestine. However, contrary to the

general notion, our study detected abundant expression of nkcc

isoforms, cftr and nka isoforms, along the intestinal tract in response

to increasing salinity challenge. This suggests that salt absorption

occurs throughout the intestinal tract and becomes more intense in

the posterior intestine during hypersalinity challenge as evidenced

by the further up-regulation of all the investigated genes (except

ncc) in the posterior intestine of fish in HSW when compared to

SW environment. The ability of the Mozambique tilapia to

significantly up-regulate intestinal key ion transporters, especially

in the posterior intestine to facilitate water uptake may be one

major factor that enables it to survive in extreme salinity. This

study has generated novel findings, insights and ideas which

represent an important milestone for the Mozambique tilapia

model and paves the way for more focused studies to be done in

the future with regards to the EGI tract. The expression of these

genes can be used as biomarkers to further delineate the

osmoregulatory role of different segments of the EGI tract for

future study using the euryhaline Mozambique tilapia model.

Table 1. Normalized luminosity indices of Nkcc/Ncc and Nka immunostaining in the gills, anterior intestine (AI) and posterior
intestine (PI) of Mozambique tilapia.

Tissues and Conditions (number of replicates) Normalized Luminosity Index* for Nkcc/Ncc Normalized Luminosity Index* for Nka

Gill

Freshwater (FW; n = 4) 0.81160.016a 0.72660.013a

Seawater (SW; n = 3) 0.92260.010b 0.82460.010b

Hypersaline water (HSW; n = 3) 0.99660.024c 0.87160.033b

P-value** ,0.001 ,0.005

Anterior Intestine (AI)

Freshwater (FW; n = 4) 0.803+0.037a 0.807+0.033a

Seawater (SW; n = 3) 0.975+0.063b 0.908+0.049a

Hypersaline water (HSW; n = 3) 1.013+0.056b 1.006+0.066a

P-value ,0.05 0.061

Posterior Intestine (PI)

Freshwater (FW; n = 4) 0.853+0.014a 0.842+0.018a

Seawater (SW; n = 3) 0.956+0.075ab 0.918+0.068a

Hypersaline water (HSW; n = 3) 1.074+0.055b 0.987+0.053a

P-value ,0.05 .0.1

*Normalized Luminosity Index (mean6SEM) is expressed as a ratio of the luminosity of Alexa 488 (Nka) or Alexa 568 (Nkcc/Ncc) to DAPI (nuclei) staining within total field
(0.307 mm2); the DAPI nuclear staining is used to correct for differences between fields.
**The data were analyzed by one-way ANOVA followed by post-hoc Duncan’s multiple range test (P,0.05 is considered significant). Different alphabets indicate
statistical significance from each other.
doi:10.1371/journal.pone.0087591.t001
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