16 research outputs found

    The problem of sharp notch in microstructured solids governed by dipolar gradient elasticity

    Get PDF
    In this paper, we deal with the asymptotic problem of a body of infinite extent with a notch (re-entrant corner) under remotely applied plane-strain or anti-plane shear loadings. The problem is formulated within the framework of the Toupin-Mindlin theory of dipolar gradient elasticity. This generalized continuum theory is appropriate to model the response of materials with microstructure. A linear version of the theory results by considering a linear isotropic expression for the strain-energy density that depends on strain-gradient terms, in addition to the standard strain terms appearing in classical elasticity. Through this formulation, a microstructural material constant is introduced, in addition to the standard Lamé constants . The faces of the notch are considered to be traction-free and a boundary-layer approach is followed. The boundary value problem is attacked with the asymptotic Knein-Williams technique. Our analysis leads to an eigenvalue problem, which, along with the restriction of a bounded strain energy, provides the asymptotic fields. The cases of a crack and a half-space are analyzed in detail as limit cases of the general notch (infinite wedge) problem. The results show significant departure from the predictions of the standard fracture mechanics

    Higher Gradient Theories and Their Foundations

    No full text
    International audienceContinuum mechanics always supplies approximate models for physical systems, in which a more fundamental (possibly discrete or inhomogeneous) microstructure may be somehow neglected. Indeed, Cauchy (or Cauchy-Navier) continuum theory describes efficiently, at a macroscopic level, the behavior of a mechanical system only when the inhomogeneities which the model does not take into account have a characteristic length scale much smaller than the macroscale where phenomena are observed.Therefore, it is now widely accepted that in some circumstances, it is necessary to add to the placement field some extra kinematical fields, to take into account, at a macroscopic level, some aspects of the mechanical behavior of materials having complex microscopic..
    corecore