3,696 research outputs found
Complex sacral fracture
We reported a case of a patient with suspected cauda equina syndrome secondary to sacral fracture, after sustaining a fall. The difficulty in early diagnosis of complex sacral fractures and the lack of clearly defined guidelines for treatment are highlighted. Thorough clinical examination is mandatory, in order to make an adequate initial assessment and follow symptoms progression and response to treatment. The threshold for performing CT imaging (or MRI, if advised), when suspecting sacral fracture and neurological compromise, should be low. A multidisciplinary approach, with contributions from orthopaedic and/or neurosurgical surgery and physiatry, should be the gold standard of treatment. In this particular case, conservative management and close follow-up led to a significant improvement of problems and a good final outcome, showing that surgical decompression is not the only valid option and that further prospective studies are needed, regarding patient selection and timing of intervention
Faster subsequence recognition in compressed strings
Computation on compressed strings is one of the key approaches to processing
massive data sets. We consider local subsequence recognition problems on
strings compressed by straight-line programs (SLP), which is closely related to
Lempel--Ziv compression. For an SLP-compressed text of length , and an
uncompressed pattern of length , C{\'e}gielski et al. gave an algorithm for
local subsequence recognition running in time . We improve
the running time to . Our algorithm can also be used to
compute the longest common subsequence between a compressed text and an
uncompressed pattern in time ; the same problem with a
compressed pattern is known to be NP-hard
A Standardized Classification for Subdural Hematomas- I
Subdural hematomas are a frequent and highly heterogeneous traumatic disorder, with significant clinical and socioeconomic consequences. In clinical and medicolegal practice, subdural hematomas are classified according to its apparent age, which significantly influences its intrinsic pathogenic behavior, forensic implications, clinical management, and outcome. Although practical, this empirical classification is somewhat arbitrary and scarcely informative, considering the remarkable heterogeneity of this entity. The current research project aims at implementing a comprehensive multifactorial classification of subdural hematomas, allowing a more standardized and coherent assessment and management of this condition. This new method of classification of subdural hematomas takes into account its intrinsic and extrinsic features, using imaging data and histopathological elements, to provide an easily apprehensible and intuitive nomenclature. The proposed classification unifies and organizes all relevant details concerning subdural hematomas, hopefully improving surgical care and forensic systematization
Simulations of extensional flow in microrheometric devices
We present a detailed numerical study of the flow of a Newtonian fluid through microrheometric devices featuring a sudden contraction–expansion. This flow configuration is typically used to generate extensional deformations and high strain rates. The excess pressure drop resulting from the converging and diverging flow is an important dynamic measure to quantify if the device is intended to be used as a microfluidic extensional rheometer. To explore this idea, we examine the effect of the contraction length, aspect ratio and Reynolds number on the flow kinematics and resulting pressure field. Analysis of the computed velocity and pressure fields show that, for typical experimental conditions used in microfluidic devices, the steady flow is highly three-dimensional with open spiraling vortical structures in the stagnant corner regions. The numerical simulations of the local kinematics and global pressure drop are in good agreement with experimental results. The device aspect ratio is shown to have a strong impact on the flow and consequently on the excess pressure drop, which is quantified in terms of the dimensionless Couette and Bagley correction factors. We suggest an approach for calculating the Bagley correction which may be especially appropriate for planar microchannels
Magnetic Fluffy Dark Matter
We explore extensions of inelastic Dark Matter and Magnetic inelastic Dark
Matter where the WIMP can scatter to a tower of heavier states. We assume a
WIMP mass  GeV and a constant splitting between
successive states  keV. For the
spin-independent scattering scenario we find that the direct experiments CDMS
and XENON strongly constrain most of the DAMA/LIBRA preferred parameter space,
while for WIMPs that interact with nuclei via their magnetic moment a region of
parameter space corresponding to  GeV and  keV
is allowed by all the present direct detection constraints.Comment: 16 pages, 6 figures, added comments about magnetic moment form factor
  to Sec 3.1.2 and results to Sec 3.2.2, final version to be published in JHE
Combining a hybrid robotic system with a bain-machine interface for the rehabilitation of reaching movements: A case study with a stroke patient
Reaching and grasping are two of the most affected functions after stroke. Hybrid rehabilitation systems combining Functional Electrical Stimulation with Robotic devices have been proposed in the literature to improve rehabilitation outcomes. In this work, we present the combined use of a hybrid robotic system with an EEG-based Brain-Machine Interface to detect the user's movement intentions to trigger the assistance. The platform has been tested in a single session with a stroke patient. The results show how the patient could successfully interact with the BMI and command the assistance of the hybrid system with low latencies. Also, the Feedback Error Learning controller implemented in this system could adjust the required FES intensity to perform the task
Slepton mass-splittings as a signal of LFV at the LHC
Precise measurements of slepton mass-splittings might represent a powerful
tool to probe supersymmetric (SUSY) lepton flavour violation (LFV) at the LHC.
We point out that mass-splittings of the first two generations of sleptons are
especially sensitive to LFV effects involving  transitions. If these
mass-splittings are LFV induced, high-energy LFV processes like the neutralino
decay {\nt}_2\to\nt_1\tau^{\pm}\mu^{\mp} as well as low-energy LFV processes
like  are unavoidable. We show that precise slepton
mass-splitting measurements and LFV processes both at the high- and low-energy
scales are highly complementary in the attempt to (partially) reconstruct the
flavour sector of the SUSY model at work. The present study represents another
proof of the synergy and interplay existing between the LHC, i.e. the {\em
high-energy frontier}, and high-precision low-energy experiments, i.e. the {\em
high-intensity frontier}.Comment: 11 pages, 5 figures. v2: added discussion on backgrounds, added
  references, version to be published on JHE
SmartEx: a case study on user profiling and adaptation in exhibition booths
An investigation into user profiling and adaptation with exhibition booth as a case study is reported. First a review of the field of exhibitions and trade fairs and a summary introduction to adaptation and profiling are given. We then introduce three criteria for the evaluation of exhibition booth: effectiveness, efficiency and affect. Effectiveness is related the amount of information collected, efficiency is a measurement of the time taken to collect the information, and affect is the perception of the experience and the mood booth visitors have during and after their visit. We have selected these criteria to assess adaptive and profiled exhibition booths, we call smart exhibition (SmartEx). The assessment is performed with an experiment with three test conditions (non-profiled/non adaptive, profiled/non-adaptive and profiled adaptive presentations). Results of the experiment are presented along discussion. While there is significant improvements of effectiveness and efficiency between the two-first test conditions, the improvement is not significant for the last test condition, for reasons explained. As for the affect, the results show that it has an under-estimated importance in people minds and that it should be addressed more carefully
Microfluidic systems for the analysis of the viscoelastic fluid flow phenomena in porous media
In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better insight about the flow characteristics of viscoelastic fluids flowing through a packed bed. For these purposes, flow visualizations and pressure drop measurements are conducted with Newtonian and viscoelastic fluids. The 1-D microfluidic analogues of porous medium consisted of microchannels with a sequence of contractions/ expansions disposed in symmetric and asymmetric arrangements. The real porous medium is in reality, a complex combination of the two arrangements of particles simulated with the microchannels, which can be considered as limiting ideal configurations. The results show that both configurations are able to mimic well the pressure drop variation with flow rate for Newtonian fluids. However, due to the intrinsic differences in the deformation rate profiles associated with each microgeometry, the symmetric configuration is more suitable for studying the flow of viscoelastic fluids at low De values, while the asymmetric configuration provides better results at high De values. In this way, both microgeometries seem to be complementary and could be interesting tools to obtain a better insight about the flow of viscoelastic fluids through a porous medium. Such model systems could be very interesting to use in polymer-flood processes for enhanced oil recovery, for instance, as a tool for selecting the most suitable viscoelastic fluid to be used in a specific formation. The selection of the fluid properties of a detergent for cleaning oil contaminated soil, sand, and in general, any porous material, is another possible application
The role of evolutive elastic properties in the performance of a sheet formed spring applied in multimedia car industry
The manufacturing process and the behavior of a sheet formed spring manufactured from an aluminum sheet is described and investigated in this work considering the specifications for the in-service conditions. The sheet formed spring is intended to be applied in car multimedia industry to replace bolted connections. Among others, are investigated the roles of the constitutive parameters and the hypothesis of evolutive elastic properties with the plastic work in the multi-step forming process and in working conditions.This research was sponsored by:a) Portugal Incentive System for Research and Technological Development. Project in co-promotion no 36265/2013 (Project HMIExcel - 2013-2015), andb) FCT with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio
- …
