10 research outputs found

    Is Nitric Oxide Decrease Observed with Naphthoquinones in LPS Stimulated RAW 264.7 Macrophages a Beneficial Property?

    Get PDF
    The search of new anti-inflammatory drugs has been a current preoccupation, due to the need of effective drugs, with less adverse reactions than those used nowadays. Several naphthoquinones (plumbagin, naphthazarin, juglone, menadione, diosquinone and 1,4-naphthoquinone), plus p-hydroquinone and p-benzoquinone were evaluated for their ability to cause a reduction of nitric oxide (NO) production, when RAW 264.7 macrophages were stimulated with lipopolysaccharide (LPS). Dexamethasone was used as positive control. Among the tested compounds, diosquinone was the only one that caused a NO reduction with statistical importance and without cytotoxicity: an IC25 of 1.09±0.24 µM was found, with 38.25±6.50% (p<0.001) NO reduction at 1.5 µM. In order to elucidate if this NO decrease resulted from the interference of diosquinone with cellular defence mechanisms against LPS or to its conversion into peroxynitrite, by reaction with superoxide radical formed by naphthoquinones redox cycling, 3-nitrotyrosine and superoxide determination was also performed. None of these parameters showed significant changes relative to control. Furthermore, diosquinone caused a decrease in the pro-inflammatory cytokines: tumour necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6). Therefore, according to the results obtained, diosquinone, studied for its anti-inflammatory potential for the first time herein, has beneficial effects in inflammation control. This study enlightens the mechanisms of action of naphthoquinones in inflammatory models, by checking for the first time the contribution of oxidative stress generated by naphthoquinones to NO reduction

    Saccharomyces cerevisiae: Population Divergence and Resistance to Oxidative Stress in Clinical, Domesticated and Wild Isolates

    Get PDF
    BACKGROUND: Saccharomyces cerevisiae has been associated with human life for millennia in the brewery and bakery. Recently it has been recognized as an emerging opportunistic pathogen. To study the evolutionary history of S. cerevisiae, the origin of clinical isolates and the importance of a virulence-associated trait, population genetics and phenotypic assays have been applied to an ecologically diverse set of 103 strains isolated from clinics, breweries, vineyards, fruits, soil, commercial supplements and insect guts. METHODOLOGY/PRINCIPAL FINDINGS: DNA sequence data from five nuclear DNA loci were analyzed for population structure and haplotype distribution. Additionally, all strains were tested for survival of oxidative stress, a trait associated with microbial pathogenicity. DNA sequence analyses identified three genetic subgroups within the recombining S. cerevisiae strains that are associated with ecology, geography and virulence. Shared alleles suggest that the clinical isolates contain genetic contribution from the fruit isolates. Clinical and fruit isolates exhibit high levels of recombination, unlike the genetically homogenous soil isolates in which no recombination was detected. However, clinical and soil isolates were more resistant to oxidative stress than any other population, suggesting a correlation between survival in oxidative stress and yeast pathogenicity. CONCLUSIONS/SIGNIFICANCE: Population genetic analyses of S. cerevisiae delineated three distinct groups, comprising primarily the (i) human-associated brewery and vineyard strains, (ii) clinical and fruit isolates (iii) and wild soil isolates from eastern U.S. The interactions between S. cerevisiae and humans potentiate yeast evolution and the development of genetically, ecologically and geographically divergent groups

    Arousal States, Symptoms, Behaviour, Sleep and Body Temperature

    No full text
    Autonomic arousal (or affective states, e.g. stress, anxiety), symptoms (e.g. fatigue, pain), sleep-disrupting behaviour (e.g. physical inactivity, electronic device use, TV watching, shift work) and medications are linked to impaired sleep and, in many cases, overweight/obesity. Further, in many cases, the phenomena are linked to an elevated BT, and in some cases, a high nocturnal BT, although there is a lack of specific research pertaining to nocturnal BT and the relationship between BT and chronic pain. A relative hyperthermia at night is known to interfere with sleep onset, possible via a phase-shift in the sleep-wake cycle. However, an elevated BT can additionally lead to activation of the inflammatory response system (e.g. cytokine secretion), which may represent another possible mechanism by which the aforementioned states, symptoms, disorders and behaviour can develop

    Anti-Fungal Therapy in the ICU

    No full text

    Viral myocarditis: from experimental models to molecular diagnosis in patients

    No full text
    corecore