13 research outputs found

    Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome

    Get PDF
    Reduced gut microbiome diversity is associated with multiple disorders including metabolic syndrome (MetS) features, though metabolomic markers have not been investigated. Our objective was to identify blood metabolite markers of gut microbiome diversity, and explore their relationship with dietary intake and MetS. We examined associations between Shannon diversity and 292 metabolites profiled by the untargeted metabolomics provider Metabolon Inc. in 1529 females from TwinsUK using linear regressions adjusting for confounders and multiple testing (Bonferroni: P < 1.71 × 10−4). We replicated the top results in an independent sample of 420 individuals as well as discordant identical twin pairs and explored associations with self-reported intakes of 20 food groups. Longitudinal changes in circulating levels of the top metabolite, were examined for their association with food intake at baseline and with MetS at endpoint. Five metabolites were associated with microbiome diversity and replicated in the independent sample. Higher intakes of fruit and whole grains were associated with higher levels of hippurate cross-sectionally and longitudinally. An increasing hippurate trend was associated with reduced odds of having MetS (OR: 0.795[0.082]; P = 0.026). These data add further weight to the key role of the microbiome as a potential mediator of the impact of dietary intake on metabolic status and health

    The chemical interactome space between the human host and the genetically defined gut metabotypes

    Get PDF
    The bacteria that colonize the gastrointestinal tracts of mammals represent a highly selected microbiome that has a profound influence on human physiology by shaping the host's metabolic and immune system activity. Despite the recent advances on the biological principles that underlie microbial symbiosis in the gut of mammals, mechanistic understanding of the contributions of the gut microbiome and how variations in the metabotypes are linked to the host health are obscure. Here, we mapped the entire metabolic potential of the gut microbiome based solely on metagenomics sequencing data derived from fecal samples of 124 Europeans (healthy, obese and with inflammatory bowel disease). Interestingly, three distinct clusters of individuals with high, medium and low metabolic potential were observed. By illustrating these results in the context of bacterial population, we concluded that the abundance of the Prevotella genera is a key factor indicating a low metabolic potential. These metagenome-based metabolic signatures were used to study the interaction networks between bacteria-specific metabolites and human proteins. We found that thirty-three such metabolites interact with disease-relevant protein complexes several of which are highly expressed in cells and tissues involved in the signaling and shaping of the adaptive immune system and associated with squamous cell carcinoma and bladder cancer. From this set of metabolites, eighteen are present in DrugBank providing evidence that we carry a natural pharmacy in our guts. Furthermore, we established connections between the systemic effects of non-antibiotic drugs and the gut microbiome of relevance to drug side effects and health-care solutions.link_to_subscribed_fulltex

    Site and Strain-Specific Variation in Gut Microbiota Profiles and Metabolism in Experimental Mice

    Get PDF
    The gastrointestinal tract microbiota (GTM) of mammals is a complex microbial consortium, the composition and activities of which influences mucosal development, immunity, nutrition and drug metabolism. It remains unclear whether the composition of the dominant GTM is conserved within animals of the same strain and whether stable GTMs are selected for by host-specific factors or dictated by environmental variables.The GTM composition of six highly inbred, genetically distinct strains of mouse (C3H, C57, GFEC, CD1, CBA nu/nu and SCID) was profiled using eubacterial -specific PCR-DGGE and quantitative PCR of feces. Animals exhibited strain-specific fecal eubacterial profiles that were highly stable (c. >95% concordance over 26 months for C57). Analyses of mice that had been relocated before and after maturity indicated marked, reproducible changes in fecal consortia and that occurred only in young animals. Implantation of a female BDF1 mouse with genetically distinct (C57 and Agoutie) embryos produced highly similar GTM profiles (c. 95% concordance) between mother and offspring, regardless of offspring strain, which was also reflected in urinary metabolite profiles. Marked institution-specific GTM profiles were apparent in C3H mice raised in two different research institutions.Strain-specific data were suggestive of genetic determination of the composition and activities of intestinal symbiotic consortia. However, relocation studies and uterine implantation demonstrated the dominance of environmental influences on the GTM. This was manifested in large variations between isogenic adult mice reared in different research institutions

    Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype

    No full text
    Obesity is a complex multifactorial disease involving genetic and environmental factors and influencing several different metabolic pathways. In this regard, metabonomics, that is the study of complex metabolite profiles in biological samples, may provide a systems approach to understand the global metabolic regulation of the organism in relation to this peculiar pathology. In this pilot study, we have applied a nuclear magnetic resonance (NMR)-based metabolomic approach on urinary samples of morbidly obese subjects. Urine samples of 15 morbidly obese insulin-resistant (body mass index>40; homeostasis assessment model of insulin resistance>3) male patients and 10 age-matched controls were collected, frozen and analyzed by high-resolution (1)H-NMR spectroscopy combined with partial least squares-discriminant analysis. Furthermore, two obese patients who underwent bariatric surgery (biliopancreatic diversion and gastric bypass, respectively) were monitored during the first 3 months after surgery and their urinary metabolic profiles were characterized. NMR-based metabolomic analysis allowed us to identify an obesity-associated metabolic phenotype (metabotype) that differs from that of lean controls. Gut flora-derived metabolites such as hippuric acid, trigonelline, 2-hydroxyisobutyrate and xanthine contributed most to the classification model and were responsible for the discrimination. These preliminary results confirmed that in humans the gut microflora metabolism is strongly linked to the obesity phenotype. Moreover, the typical obese metabotype is lost after weight loss induced by bariatric surgery

    Traditional Chinese Medicine Herbal Drugs: From Heritage to Future Developments

    No full text
    Traditional Chinese medicineTraditional chinese medicine(TCM) refers to medicine that has been collected, processed, prepared, and applied in clinics under the guidance of TCM theory. TCM herbal drugs mainly come from natural medicinal ingredients and their processed products, including plant medicine, animal medicine, mineral drugs, and parts of chemical biological preparation. Although Chinese herbal medicinesChinese herbal medicines, composed of multiple biologically active compounds, are widely claimed to help a variety of diseases, they have not been fully accepted by mainstream medicine because of the complex nature of the formulae, as well as a lack of stringent quality controlQuality control. This chapter briefly features the heritage of TCM and discusses the potential opportunities for rationalizing and modernizing this ancient art of healing for global health care, and the technical and regulatoryRegulatorychallenges to be resolved. To date, the European Pharmacopoeia has already incorporated 75 of the 300 commonly used TCM herbal drugs, following publication of respective monographs by TCM working party of the European Directorate of Quality of Medicines and HealthCare. Through high-quality multidisciplinary collaborations between academia, clinicians, pharmaceutical industry and regulatoryRegulatoryagencies across the globe, we anticipate to harness the healing power of this two-millennium-old system of health care for establishing a novel platform of drugDrugdiscovery as well as creating an integrated personalized medicine of tomorrow
    corecore