1,462 research outputs found

    Molecular Mechanism of Capacitative Calcium Entry Deficits in Familial Alzheimer’s Disease

    Get PDF
    Poster PresentationPresenilin (PS) is the catalytic subunit of the gamma-secretase which is responsible for the cleavage of amyloid precursor protein to form beta amyloid (Aβ). Mutations in PS associated with familial Alzheimer’s disease (FAD) increase the Aβ plaques formation in the brain and cause neurodegeneration. Apart from this, FAD-linked PS mutations have been demonstrated to disrupt intracellular calcium (Ca2+) regulation. Accumulating evidence suggests that Ca2+ disruption may play a proximal role in the AD pathogenesis. Mutant PS exaggerated Ca2+ release from the endoplasmic reticulum (ER). It also attenuated Ca2+ entry through the capacitative Ca2+ entry (CCE) pathway, yet, the mechanism is not fully understood. Using a human neuroblast cell line SH-SY5Y and Ca2+ imaging technique, we observed CCE deficits in FAD-linked PS1-M146L retroviral infected cell. The attenuation of CCE in PS1 mutant cells was not mediated by the down-regulation of STIM1 and Orai1 expression, the known essential molecular players in the CCE pathway. Instead, we identified a molecular interaction between PS and STIM1 proteins by immunoprecipitation. On the other hand, immunofluorescence staining showed a significant reduction in puncta formation after ER Ca2+ depleted by thapsigargin in cells infected with PS1-M146L as compared to the wild type PS1 infected cells. Taken together, our results suggest a molecular mechanism for the CCE deficits in FAD associated with PS1 mutations. The interaction of mutant PS1 with STIM1 exerts a negative impact on its oligomerization and/or its interaction with Orai1. Our results may suggest molecular targets for the development of therapeutic agents that help to treat the disease.published_or_final_versio

    Patch-Clamp Study of Single Ryanodine Receptor Channels in the Outer Nuclear Membrane

    Get PDF
    Poster presentationModulation of cytoplasmic free calcium (Ca2+) concentration is a universal signaling pathway that regulates numerous cellular processes. Ubiquitous intracellular Ca2+ release channels – inositol 1,4,5-trisphosphate receptor (InsP3R) and ryanodine receptor (RyR) channels – localized in the sarco/endoplasmic reticulum (ER) play a central role in this pathway in all animal cells. Electrophysiological study of the single-channel conductance and gating properties of these Ca2+ release channels with conventional patch-clamp approach has been hindered by their intracellular localization. To overcome this limitation, patch-clamp electrophysiology has been applied on isolated nuclei where these Ca2+ release channels are found abundantly in the outer nuclear envelope. We have successfully uterlized this nuclear membrane electrophysiology to study the gating properties of single InsP3R channels in several cellular systems. Whereas, all the current single channel data, including channel conductance, permeation properties, and ligand regulation, of the RyR channels were done exclusively by reconstituting the channels into artificial planar lipid bilayers. To gain insights into the single channel properties of the RyR in its native membrane milieu, we applied nuclear membrane electrophysiological study on isolated nuclei from stable-inducible mouse RyR2 HEK-293 cells. Using potassium as charge carrier, caffeine activated single channel current with conductance of 750 pS in isolated nuclei. This caffeine activated current showed a linear current/voltage relationship under symmetrical ionic conditions and was sensitive to non-specific RyR inhibitor, ruthenium red. Furthermore, the single RyR channels recorded from the outer nuclear membrane exhibited bi-phasic Ca2+ regulation. In conclusion, we demonstrated, for the first time, that single RyR channels recordings from isolated nuclei and our results suggested that the nuclear membrane electrophysiology could be a sensitive and robust technique to study the gating properties of intracellular channels, including the InsP3R and RyR.published_or_final_versio

    Extremely cold and hot temperatures increase the risk of ischaemic heart disease mortality: epidemiological evidence from China.

    No full text
    OBJECTIVE: To examine the effects of extremely cold and hot temperatures on ischaemic heart disease (IHD) mortality in five cities (Beijing, Tianjin, Shanghai, Wuhan and Guangzhou) in China; and to examine the time relationships between cold and hot temperatures and IHD mortality for each city. DESIGN: A negative binomial regression model combined with a distributed lag non-linear model was used to examine city-specific temperature effects on IHD mortality up to 20 lag days. A meta-analysis was used to pool the cold effects and hot effects across the five cities. PATIENTS: 16 559 IHD deaths were monitored by a sentinel surveillance system in five cities during 2004-2008. RESULTS: The relationships between temperature and IHD mortality were non-linear in all five cities. The minimum-mortality temperatures in northern cities were lower than in southern cities. In Beijing, Tianjin and Guangzhou, the effects of extremely cold temperatures were delayed, while Shanghai and Wuhan had immediate cold effects. The effects of extremely hot temperatures appeared immediately in all the cities except Wuhan. Meta-analysis showed that IHD mortality increased 48% at the 1st percentile of temperature (extremely cold temperature) compared with the 10th percentile, while IHD mortality increased 18% at the 99th percentile of temperature (extremely hot temperature) compared with the 90th percentile. CONCLUSIONS: Results indicate that both extremely cold and hot temperatures increase IHD mortality in China. Each city has its characteristics of heat effects on IHD mortality. The policy for response to climate change should consider local climate-IHD mortality relationships

    In silico prediction of the granzyme B degradome

    Get PDF
    10.1186/1471-2164-12-S3-S1110th Int. Conference on Bioinformatics - 1st ISCB Asia Joint Conference 2011, InCoB 2011/ISCB-Asia 2011: Computational Biology - Proceedings from Asia Pacific Bioinformatics Network (APBioNet)12SUPPL. 3S1

    A multi-factor model for caspase degradome prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Caspases belong to a class of cysteine proteases which function as critical effectors in cellular processes such as apoptosis and inflammation by cleaving substrates immediately after unique tetrapeptide sites. With hundreds of reported substrates and many more expected to be discovered, the elucidation of the caspase degradome will be an important milestone in the study of these proteases in human health and disease. Several computational methods for predicting caspase cleavage sites have been developed recently for identifying potential substrates. However, as most of these methods are based primarily on the detection of the tetrapeptide cleavage sites - a factor necessary but not sufficient for predicting <it>in vivo </it>substrate cleavage - prediction outcomes will inevitably include many false positives.</p> <p>Results</p> <p>In this paper, we show that structural factors such as the presence of disorder and solvent exposure in the vicinity of the cleavage site are important and can be used to enhance results from cleavage site prediction. We constructed a two-step model incorporating cleavage site prediction and these factors to predict caspase substrates. Sequences are first predicted for cleavage sites using CASVM or GraBCas. Predicted cleavage sites are then scored, ranked and filtered against a cut-off based on their propensities for locating in disordered and solvent exposed regions. Using an independent dataset of caspase substrates, the model was shown to achieve greater positive predictive values compared to CASVM or GraBCas alone, and was able to reduce the false positives pool by up to 13% and 53% respectively while retaining all true positives. We applied our prediction model on the family of receptor tyrosine kinases (RTKs) and highlighted several members as potential caspase targets. The results suggest that RTKs may be generally regulated by caspase cleavage and in some cases, promote the induction of apoptotic cell death - a function distinct from their role as transducers of survival and growth signals.</p> <p>Conclusion</p> <p>As a step towards the prediction of <it>in vivo </it>caspase substrates, we have developed an accurate method incorporating cleavage site prediction and structural factors. The multi-factor model augments existing methods and complements experimental efforts to define the caspase degradome on the systems-wide basis.</p

    Synthetic nuclear diagnostics for inferring plasma properties of inertial confinement fusion implosions

    Get PDF
    A suite of synthetic nuclear diagnostics has been developed to post-process radiation hydrodynamics simulations performed with the code Chimera. These provide experimental observables based on simulated capsule properties and are used to assess alternative experimental and data analysis techniques. These diagnostics include neutron spectroscopy, primary and scattered neutron imaging, neutron activation, γ-ray time histories and carbon γ-ray imaging. Novel features of the neutron spectrum have been analysed to infer plasma parameters. The nT and nD backscatter edges have been shown to provide a shell velocity measurement. Areal density asymmetries created by low mode perturbations have been inferred from the slope of the downscatter spectrum down to 10 MeV. Neutron activation diagnostics showed significant aliasing of high mode areal density asymmetries when observing a capsule implosion with 3D multimode perturbations applied. Carbon γ-ray imaging could be used to image the ablator at a high convergence ratio. Time histories of both the fusion and carbon γ signals showed a greater time difference between peak intensities for the perturbed case when compared to a symmetric simulation

    Multidisciplinary teams, and parents, negotiating common ground in shared-care of children with long-term conditions: A mixed methods study

    Get PDF
    Background: Limited negotiation around care decisions is believed to undermine collaborative working between parents of children with long-term conditions and professionals, but there is little evidence of how they actually negotiate their respective roles. Using chronic kidney disease as an exemplar this paper reports on a multi-method study of social interaction between multidisciplinary teams and parents as they shared clinical care. Methods. Phases 1 and 2: a telephone survey mapping multidisciplinary teams' parent-educative activities, and qualitative interviews with 112 professionals (Clinical-psychologists, Dietitians, Doctors, Nurses, Play-specialists, Pharmacists, Therapists and Social-workers) exploring their accounts of parent-teaching in the 12 British children's kidney units. Phase 3: six ethnographic case studies in two units involving observations of professional/parent interactions during shared-care, and individual interviews. We used an analytical framework based on concepts drawn from Communities of Practice and Activity Theory. Results: Professionals spoke of the challenge of explaining to each other how they are aware of parents' understanding of clinical knowledge, and described three patterns of parent-educative activity that were common across MDTs: Engaging parents in shared practice; Knowledge exchange and role negotiation, and Promoting common ground. Over time, professionals had developed a shared repertoire of tools to support their negotiations with parents that helped them accomplish common ground during the practice of shared-care. We observed mutual engagement between professionals and parents where a common understanding of the joint enterprise of clinical caring was negotiated. Conclusions: For professionals, making implicit knowledge explicit is important as it can provide them with a language through which to articulate more clearly to each other what is the basis of their intuition-based hunches about parents' support needs, and may help them to negotiate with parents and accelerate parents' learning about shared caring. Our methodology and results are potentially transferrable to shared management of other conditions. © 2013 Swallow et al.; licensee BioMed Central Ltd

    Standardised Outcomes in Nephrology-Polycystic Kidney Disease (SONG-PKD): study protocol for establishing a core outcome set in polycystic kidney disease

    Get PDF
    BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common potentially life threatening inherited kidney disease and is responsible for 5-10% of cases of end-stage kidney disease (ESKD). Cystic kidneys may enlarge up to 20 times the weight of a normal kidney due to the growth of renal cysts, and patients with ADPKD have an increased risk of morbidity, premature mortality, and other life-time complications including renal and hepatic cyst and urinary tract infection, intracranial aneurysm, diverticulosis, and kidney pain which impair quality of life. Despite some therapeutic advances and the growing number of clinical trials in ADPKD, the outcomes that are relevant to patients and clinicians, such as symptoms and quality of life, are infrequently and inconsistently reported. This potentially limits the contribution of trials to inform evidence-based decision-making. The Standardised Outcomes in Nephrology-Polycystic Kidney Disease (SONG-PKD) project aims to establish a consensus-based set of core outcomes for trials in PKD (with an initial focus on ADPKD but inclusive of all stages) that patients and health professionals identify as critically important. METHODS: The five phases of SONG-PKD are: a systematic review to identify outcomes that have been reported in existing PKD trials; focus groups with nominal group technique with patients and caregivers to identify, rank, and describe reasons for their choices; qualitative stakeholder interviews with health professionals to elicit individual values and perspectives on outcomes for trials involving patients with PKD; an international three-round Delphi survey with all stakeholder groups (including patients, caregivers, healthcare providers, policy makers, researchers, and industry) to gain consensus on critically important core outcome domains; and a consensus workshop to review and establish a set of core outcome domains and measures for trials in PKD. DISCUSSION: The SONG-PKD core outcome set is aimed at improving the consistency and completeness of outcome reporting across ADPKD trials, leading to improvements in the reliability and relevance of trial-based evidence to inform decisions about treatment and ultimately improve the care and outcomes for people with ADPKD
    corecore