9 research outputs found

    Applying Benford’s law to detect accounting data manipulation in the banking industry

    Get PDF
    We utilise Benford’s Law to test if balance sheet and income statement data broadly used to assess bank soundness were manipulated prior to and also during the global financial crisis. We find that all banks resort to loan loss provisions to manipulate earnings and income upwards. Distressed institutions that have stronger incentives to conceal their financial difficulties resort additionally to manipulating loan loss allowances and non-performing loans downwards. Moreover, manipulation is magnified during the crisis and expands to encompass regulatory capital

    Mineralogical attenuation for metallic remediation in a passive system for mine water treatment

    Get PDF
    Passive systems with constructed wetlands have been consistently used to treat mine water from abandoned mines. Long-term and cost-effective remediation is a crucial expectation for these water treatment facilities. To achieve that, a complex chain of physical, chemical, biological, and mineralogical mechanisms for pollutants removal must be designed to simulate natural attenuation processes. This paper aims to present geochemical and mineralogical data obtained in a recently constructed passive system (from an abandoned mine, Jales, Northern Portugal). It shows the role of different solid materials in the retention of metals and arsenic, observed during the start-up period of the treatment plant. The mineralogical study focused on two types of materials: (1) the ochre-precipitates, formed as waste products from the neutralization process, and (2) the fine-grained minerals contained in the soil of the wetlands. The ochre-precipitates demonstrated to be poorly ordered iron-rich material, which gave rise to hematite upon artificial heating. The heating experiments also provided mineralogical evidence for the presence of an associated amorphous arsenic-rich compound. Chemical analysis on the freshly ochre-precipitates revealed high concentrations of arsenic (51,867 ppm) and metals, such as zinc (1,213 ppm) and manganese (821 ppm), indicating strong enrichment factors relative to the water from which they precipitate. Mineralogical data obtained in the soil of the wetlands indicate that chlorite, illite, chlorite–vermiculite and mica–vermiculite mixedlayers, vermiculite, kaolinite and goethite are concentrated in the fine-grained fractions (<20 and <2 μm). The chemical analyses show that high levels of arsenic (up to 3%) and metals are also retained in these fractions, which may be enhanced by the low degree of order of the clay minerals as suggested by an XRD study. The obtained results suggest that, although the treatment plant has been receiving water only since 2006, future performance will be strongly dependent on these identified mineralogical pollutant hosts.Fundação para a Ciência e a Tecnologia (FCT

    Individual tree and stand-level carbon and nutrient contents across one rotation of loblolly pine plantations on a reclaimed surface mine

    Get PDF
    While reclaimed loblolly pine (Pinus taeda L.) plantations in east Texas, USA have demonstrated similar aboveground productivity levels relative to unmined forests, there is interest in assessing carbon (C) and nutrients in aboveground components of reclaimed trees. Numerous studies have previously documented aboveground biomass, C, and nutrient contents in loblolly pine plantations; however, similar data have not been collected on mined lands. We investigated C, N, P, K, Ca, and Mg aboveground contents for first-rotation loblolly pine growing on reclaimed mined lands in the Gulf Coastal Plain over a 32-year chronosequence and correlated elemental rates to stand age, stem growth, and similar data for unmined lands. At the individual tree level, we evaluated elemental contents in aboveground biomass components using tree size, age, and site index as predictor variables. At the stand-level, we then scaled individual tree C and nutrients and fit a model to determine the sensitivity of aboveground elemental contents to stand age and site index. Our data suggest that aboveground C and nutrients in loblolly pine on mined lands exceed or follow similar trends to data for unmined pine plantations derived from the literature. Diameter and height were the best predictors of individual tree stem C and nutrient contents (R ≥ 0.9473 and 0.9280, respectively) followed by stand age (R ≥ 0.8660). Foliage produced weaker relationships across all predictor variables compared to stem, though still significant (P ≤ 0.05). The model for estimating stand-level C and nutrients using stand age provided a good fit, indicating that contents aggrade over time predictably. Results of this study show successful modelling of reclaimed loblolly pine aboveground C and nutrients, and suggest elemental cycling is comparable to unmined lands, thus providing applicability of our model to related systems

    Strategies to address coal mine-created environmental issues and their feasibility study on northeastern coalfields of Assam, India: a review

    No full text

    Glial responses to implanted electrodes in the brain

    No full text

    Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation

    No full text
    corecore