590 research outputs found

    Engineered Protein Polymer-Gold Nanoparticle Hybrid Materials for Small Molecule Delivery

    Full text link
    We have fabricated protein polymer-gold nanoparticle (P-GNP) nanocomposites that exhibit enhanced binding and delivery properties of the small hydrophobic molecule drug, curcumin, to the model breast cancer cell line, MCF-7. These hybrid biomaterials are constructed via in situ GNP templated-synthesis with genetically engineered histidine tags. The P-GNP nanocomposites exhibit enhanced small molecule loading, sustained release and increased uptake by MCF-7 cells. When compared to the proteins polymers alone, the P-GNPs demonstrate a greater than 7-fold increase in curcumin binding, a nearly 50% slower release profile and more than 2-fold increase in cellular uptake of curcumin. These results suggest that P-GNP nanocomposites serve as promising candidates for drug delivery vehicles

    Ca2+ imaging of self and other in medial prefrontal cortex during social dominance interactions in a tube test.

    Get PDF
    The study of social dominance interactions between animals offers a window onto the decision-making involved in establishing dominance hierarchies and an opportunity to examine changes in social behavior observed in certain neurogenetic disorders. Competitive social interactions, such as in the widely used tube test, reflect this decision-making. Previous studies have focused on the different patterns of behavior seen in the dominant and submissive animal, neural correlates of effortful behavior believed to mediate the outcome of such encounters, and interbrain correlations of neural activity. Using a rigorous mutual information criterion, we now report that neural responses recorded with endoscopic calcium imaging in the prelimbic zone of the medial prefrontal cortex show unique correlations to specific dominance-related behaviors. Interanimal analyses revealed cell/behavior correlations that are primarily with an animal's own behavior or with the other animal's behavior, or the coincident behavior of both animals (such as pushing by one and resisting by the other). The comparison of unique and coincident cells helps to disentangle cell firing that reflects an animal's own or the other's specific behavior from situations reflecting conjoint action. These correlates point to a more cognitive rather than a solely behavioral dimension of social interactions that needs to be considered in the design of neurobiological studies of social behavior. These could prove useful in studies of disorders affecting social recognition and social engagement, and the treatment of disorders of social interaction

    Modulation of phosphofructokinase (PFK) from Setaria cervi, a bovine filarial parasite, by different effectors and its interaction with some antifilarials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphofructokinase (ATP: D-fructose-6-phosphate-1-phosphotransferase, EC 2.7.1.11, PFK) is of primary importance in the regulation of glycolytic flux. This enzyme has been extensively studied from mammalian sources but relatively less attention has been paid towards its characterization from filarial parasites. Furthermore, the information about the response of filarial PFK towards the anthelmintics/antifilarial compounds is lacking. In view of these facts, PFK from <it>Setaria cervi</it>, a bovine filarial parasite having similarity with that of human filarial worms, was isolated, purified and characterized.</p> <p>Results</p> <p>The <it>S. cervi </it>PFK was cytosolic in nature. The adult parasites (both female and male) contained more enzyme activity than the microfilarial (Mf) stage of <it>S. cervi</it>, which exhibited only 20% of total activity. The <it>S. cervi </it>PFK could be modulated by different nucleotides and the response of enzyme to these nucleotides was dependent on the concentrations of substrates (F-6-P and ATP). The enzyme possessed wide specificity towards utilization of the nucleotides as phosphate group donors. <it>S. cervi </it>PFK showed the presence of thiol group(s) at the active site of the enzyme, which could be protected from inhibitory action of para-chloromercuribenzoate (p-CMB) up to about 76% by pretreatment with cysteine or β-ME. The sensitivity of PFK from <it>S. cervi </it>towards antifilarials/anthelmintics was comparatively higher than that of mammalian PFK. With suramin, the Ki value for rat liver PFK was 40 times higher than PFK from <it>S. cervi</it>.</p> <p>Conclusions</p> <p>The results indicate that the activity of filarial PFK may be modified by different effectors (such as nucleotides, thiol group reactants and anthelmintics) in filarial worms depending on the presence of varying concentrations of substrates (F-6-P and ATP) in the cellular milieu. It may possess thiol group at its active site responsible for catalysis. Relatively, 40 times higher sensitivity of filarial PFK towards suramin as compared to the analogous enzyme from the mammalian system indicates that this enzyme could be exploited as a potential chemotherapeutic target against filariasis.</p

    A theory of mobile library service delivery

    Get PDF
    Research indicates there is widespread acceptance that nomadicity of library users is a phenomenon that will continue to increase; however, mobile learning is a resource that relatively few academic libraries appear to be taking advantage of. This paper presents a model developed during an investigation using a grounded theory approach into factors that may contribute to the delivery of library services to mobile technologies. A sample of 42 professionally qualified library staff from the Australasian vocational education and training (VET) sector was investigated to determine how confident and capable library staff believed they were to respond to technology advancement challenges and the training and support required for that response. The resulting theoretical model explains the impact of mobile technologies on library services and highlights the complex factors contributing to mobile technology acceptance at both an organisational and individual level. The presence of a series of catalysing impacts forms a central core and their management can enable an organisation to move from a position of uncertainty to one where the consequences of mobile technologies have been normalised

    Antimony-doped graphene nanoplatelets

    Get PDF
    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalystsclose0

    In search of causal variants: refining disease association signals using cross-population contrasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide association (GWA) using large numbers of single nucleotide polymorphisms (SNPs) is now a powerful, state-of-the-art approach to mapping human disease genes. When a GWA study detects association between a SNP and the disease, this signal usually represents association with a set of several highly correlated SNPs in strong linkage disequilibrium. The challenge we address is to distinguish among these correlated loci to highlight potential functional variants and prioritize them for follow-up.</p> <p>Results</p> <p>We implemented a systematic method for testing association across diverse population samples having differing histories and LD patterns, using a logistic regression framework. The hypothesis is that important underlying biological mechanisms are shared across human populations, and we can filter correlated variants by testing for heterogeneity of genetic effects in different population samples. This approach formalizes the descriptive comparison of p-values that has typified similar cross-population fine-mapping studies to date. We applied this method to correlated SNPs in the cholinergic nicotinic receptor gene cluster <it>CHRNA5-CHRNA3-CHRNB4</it>, in a case-control study of cocaine dependence composed of 504 European-American and 583 African-American samples. Of the 10 SNPs genotyped in the r<sup>2 </sup>≥ 0.8 bin for <it>rs16969968</it>, three demonstrated significant cross-population heterogeneity and are filtered from priority follow-up; the remaining SNPs include <it>rs16969968 </it>(heterogeneity p = 0.75). Though the power to filter out rs16969968 is reduced due to the difference in allele frequency in the two groups, the results nevertheless focus attention on a smaller group of SNPs that includes the non-synonymous SNP rs16969968, which retains a similar effect size (odds ratio) across both population samples.</p> <p>Conclusion</p> <p>Filtering out SNPs that demonstrate cross-population heterogeneity enriches for variants more likely to be important and causative. Our approach provides an important and effective tool to help interpret results from the many GWA studies now underway.</p

    Genetic Patterns of Domestication in Pigeonpea (Cajanus cajan (L.) Millsp.) and Wild Cajanus Relatives

    Get PDF
    Pigeonpea (Cajanus cajan) is an annual or short-lived perennial food legume of acute regional importance, providing significant protein to the human diet in less developed regions of Asia and Africa. Due to its narrow genetic base, pigeonpea improvement is increasingly reliant on introgression of valuable traits from wild forms, a practice that would benefit from knowledge of its domestication history and relationships to wild species. Here we use 752 single nucleotide polymorphisms (SNPs) derived from 670 low copy orthologous genes to clarify the evolutionary history of pigeonpea (79 accessions) and its wild relatives (31 accessions). We identified three well-supported lineages that are geographically clustered and congruent with previous nuclear and plastid sequence-based phylogenies. Among all species analyzed Cajanus cajanifolius is the most probable progenitor of cultivated pigeonpea. Multiple lines of evidence suggest recent gene flow between cultivated and non-cultivated forms, as well as historical gene flow between diverged but sympatric species. Evidence supports that primary domestication occurred in India, with a second and more recent nested population bottleneck focused in tropical regions that is the likely consequence of pigeonpea breeding. We find abundant allelic variation and genetic diversity among the wild relatives, with the exception of wild species from Australia for which we report a third bottleneck unrelated to domestication within India. Domesticated C. cajan possess 75% less allelic diversity than the progenitor clade of wild Indian species, indicating a severe “domestication bottleneck” during pigeonpea domestication

    Complete Mitochondrial Genome Sequencing Reveals Novel Haplotypes in a Polynesian Population

    Get PDF
    The high risk of metabolic disease traits in Polynesians may be partly explained by elevated prevalence of genetic variants involved in energy metabolism. The genetics of Polynesian populations has been shaped by island hoping migration events which have possibly favoured thrifty genes. The aim of this study was to sequence the mitochondrial genome in a group of Maoris in an effort to characterise genome variation in this Polynesian population for use in future disease association studies. We sequenced the complete mitochondrial genomes of 20 non-admixed Maori subjects using Affymetrix technology. DNA diversity analyses showed the Maori group exhibited reduced mitochondrial genome diversity compared to other worldwide populations, which is consistent with historical bottleneck and founder effects. Global phylogenetic analysis positioned these Maori subjects specifically within mitochondrial haplogroup - B4a1a1. Interestingly, we identified several novel variants that collectively form new and unique Maori motifs – B4a1a1c, B4a1a1a3 and B4a1a1a5. Compared to ancestral populations we observed an increased frequency of non-synonymous coding variants of several mitochondrial genes in the Maori group, which may be a result of positive selection and/or genetic drift effects. In conclusion, this study reports the first complete mitochondrial genome sequence data for a Maori population. Overall, these new data reveal novel mitochondrial genome signatures in this Polynesian population and enhance the phylogenetic picture of maternal ancestry in Oceania. The increased frequency of several mitochondrial coding variants makes them good candidates for future studies aimed at assessment of metabolic disease risk in Polynesian populations

    Improving gene-set enrichment analysis of RNA-Seq data with small replicates

    Get PDF
    Deregulated pathways identified from transcriptome data of two sample groups have played a key role in many genomic studies. Gene-set enrichment analysis (GSEA) has been commonly used for pathway or functional analysis of microarray data, and it is also being applied to RNA-seq data. However, most RNA-seq data so far have only small replicates. This enforces to apply the gene-permuting GSEA method (or preranked GSEA) which results in a great number of false positives due to the inter-gene correlation in each gene-set. We demonstrate that incorporating the absolute gene statistic in one-tailed GSEA considerably improves the false-positive control and the overall discriminatory ability of the gene-permuting GSEA methods for RNA-seq data. To test the performance, a simulation method to generate correlated read counts within a gene-set was newly developed, and a dozen of currently available RNA-seq enrichment analysis methods were compared, where the proposed methods outperformed others that do not account for the inter-gene correlation. Analysis of real RNA-seq data also supported the proposed methods in terms of false positive control, ranks of true positives and biological relevance. An efficient R package (AbsFilterG- SEA) coded with C++ (Rcpp) is available from CRAN.open
    corecore