61 research outputs found

    Controversial significance of early S100B levels after cardiac surgery

    Get PDF
    BACKGROUND: The brain-derived protein S100B has been shown to be a useful marker of brain injury of different etiologies. Cognitive dysfunction after cardiac surgery using cardiopulmonary bypass has been reported to occur in up to 70% of patients. In this study we tried to evaluate S100B as a marker for cognitive dysfunction after coronary bypass surgery with cardiopulmonary bypass in a model where the inflow of S100B from shed mediastinal blood was corrected for. METHODS: 56 patients scheduled for coronary artery bypass grafting underwent prospective neuropsychological testing. The test scores were standardized and an impairment index was constructed. S100B was sampled at the end of surgery, hourly for the first 6 hours, and then 8, 10, 15, 24 and 48 hours after surgery. None of the patients received autotransfusion. RESULTS: In simple linear analysis, no significant relation was found between S100B levels and neuropsychological outcome. In a backwards stepwise regression analysis the three variables, S100B levels at the end of cardiopulmonary bypass, S100B levels 1 hour later and the age of the patients were found to explain part of the neuropsychological deterioration (r = 0.49, p < 0.005). CONCLUSIONS: In this study we found that S100B levels 1 hour after surgery seem to be the most informative. Our attempt to control the increased levels of S100B caused by contamination from the surgical field did not yield different results. We conclude that the clinical value of S100B as a predictive measurement of postoperative cognitive dysfunction after cardiac surgery is limited

    Female Fertility Affects Men's Linguistic Choices

    Get PDF
    We examined the influence of female fertility on the likelihood of male participants aligning their choice of syntactic construction with those of female confederates. Men interacted with women throughout their menstrual cycle. On critical trials during the interaction, the confederate described a picture to the participant using particular syntactic constructions. Immediately thereafter, the participant described to the confederate a picture that could be described using either the same construction that was used by the confederate or an alternative form of the construction. Our data show that the likelihood of men choosing the same syntactic structure as the women was inversely related to the women's level of fertility: higher levels of fertility were associated with lower levels of linguistic matching. A follow-up study revealed that female participants do not show this same change in linguistic behavior as a function of changes in their conversation partner's fertility. We interpret these findings in the context of recent data suggesting that non-conforming behavior may be a means of men displaying their fitness as a mate to women

    Contribution of limbic norepinephrine to cannabinoid-induced aversion

    Get PDF
    RATIONALE: The cannabinoid system has risen to the forefront in the development of novel treatments for a number of pathophysiological processes. However, significant side effects have been observed in clinical trials raising concerns regarding the potential clinical utility of cannabinoid-based agents. Understanding the neural circuits and neurochemical substrates impacted by cannabinoids will provide a better means of gaging their actions within the central nervous system that may contribute to the expression of unwanted side effects. OBJECTIVES: In the present study, we investigated whether norepinephrine (NE) in the limbic forebrain is a critical determinant of cannabinoid receptor agonist-induced aversion and anxiety in rats. METHODS: An immunotoxin lesion approach was combined with behavioral analysis using a place conditioning paradigm and the elevated zero maze. RESULTS: Our results show that the non-selective CB1/CB2 receptor agonist, WIN 55,212-2, produced a significant place aversion in rats. Further, NE in the nucleus accumbens was critical for WIN 55,212-2-induced aversion but did not affect anxiety-like behaviors. Depletion of NE from the bed nucleus of the stria terminalis was ineffective in altering WIN 55,212-2-induced aversion and anxiety. CONCLUSIONS: These results indicate that limbic, specifically accumbal, NE is required for cannabinoid-induced aversion but is not essential to cannabinoid-induced anxiety.This works was supported by PHS grant DA 020129. Ana Franky Carvalho was supported by the Portuguese Foundation for Science and Technology (SFRH/BD/33236/2007)

    Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition

    Get PDF
    Cognitive dysfunction is a core feature of dementia and a prominent feature in psychiatric disease. As non-redundant regulators of intracellular cAMP gradients, phosphodiesterases (PDE) mediate fundamental aspects of brain function relevant to learning, memory, and higher cognitive functions. Phosphodiesterase-4B (PDE4B) is an important phosphodiesterase in the hippocampal formation, is a major Disrupted in Schizophrenia 1 (DISC1) binding partner and is itself a risk gene for psychiatric illness. To define the effects of specific inhibition of the PDE4B subtype, we generated mice with a catalytic domain mutant form of PDE4B (Y358C) that has decreased ability to hydrolyze cAMP. Structural modelling predictions of decreased function and impaired binding with DISC1 were confirmed in cell assays. Phenotypic characterization of the PDE4BY358C mice revealed facilitated phosphorylation of CREB, decreased binding to DISC1, and upregulation of DISC1 and β-Arrestin in hippocampus and amygdala. In behavioural assays, PDE4BY358C mice displayed decreased anxiety and increased exploration, as well as cognitive enhancement across several tests of learning and memory, consistent with synaptic changes including enhanced long-term potentiation and impaired depotentiation ex vivo. PDE4BY358C mice also demonstrated enhanced neurogenesis. Contextual fear memory, though intact at 24 hours, was decreased at 7 days in PDE4BY358C mice, an effect replicated pharmacologically with a non-selective PDE4 inhibitor, implicating cAMP signalling by PDE4B in a very late phase of consolidation. No effect of the PDE4BY358C mutation was observed in the pre-pulse inhibition and forced swim tests. Our data establish specific inhibition of PDE4B as a promising therapeutic approach for disorders of cognition and anxiety, and a putative target for pathological fear memory

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Cytolytic mechanisms involved in non-MHC-restricted cytotoxicity in Chediak-Higashi syndrome

    No full text
    To determine the mechanisms responsible for the impaired lymphocyte-mediated cytotoxicity in Chediak-Higashi syndrome (CHS), we investigated the killing ability of peripheral blood lymphocytes (PBL) from three patients with CHS using several kinds of target cells that were sensitive to perforin, Fas ligand (FasL), and/or tumour necrosis factor-alpha (TNF-α). Freshly isolated CHS PBL did not kill K562 target cells, killing of which by normal PBL was perforin-dependent, as demonstrated by complete inhibition by concanamycin A (CMA), an inhibitor of perforin-based cytotoxicity. In contrast, the CHS PBL exhibited substantial cytotoxicity against Jurkat cells, which was only partially inhibited by CMA treatment but not by the addition of neutralizing anti-FasL or anti-TNF-α antibodies. IL-2-activated CHS PBL exhibited substantial levels of cytotoxicity against K562 and Jurkat cells, the levels being 74% and 83% of the respective normal control values, respectively. CMA treatment showed that while the cytotoxicity of IL-2-activated CHS PBL against K562 was largely dependent on perforin, that against Jurkat was largely not. IL-2-activated CHS PBL expressed FasL mRNA, and killed Fas transfectants. These findings indicate that CHS PBL have an ability to kill some target cells via a perforin-mediated pathway, especially when they are activated by IL-2. It was also demonstrated that CHS PBL can exert cytotoxicity against certain target cells by utilizing FasL and an undefined effector molecule other than perforin, FasL, or TNF-α

    Common polymorphisms in dopamine-related genes combine to produce a ‘schizophrenia-like’ prefrontal hypoactivity

    No full text
    Individual changes in dopamine-related genes influence prefrontal activity during cognitive-affective processes; however, the extent to which common genetic variations combine to influence prefrontal activity is unknown. We assessed catechol-O-methyltransferase (COMT) Val108/158Met (rs4680) and dopamine D2 receptor (DRD2) G-T (rs2283265) single nucleotide polymorphisms and functional magnetic resonance imaging during an emotional response inhibition test in 43 healthy adults and 27 people with schizophrenia to determine the extent to which COMT Val108/158Met and DRD2 G-T polymorphisms combine to influence prefrontal response to cognitive-affective challenges. We found an increased number of cognitive-deficit risk alleles in these two dopamine-regulating genes predict reduced prefrontal activation during response inhibition in healthy adults, mimicking schizophrenia-like prefrontal hypoactivity. Our study provides evidence that functionally related genes can combine to produce a disease-like endophenotype
    corecore