148 research outputs found

    A semi-supervised approach for rapidly creating clinical biomarker phenotypes in the UK Biobank using different primary care EHR and clinical terminology systems

    Get PDF
    Objectives: The UK Biobank (UKB) is making primary care electronic health records (EHRs) for 500 000 participants available for COVID-19-related research. Data are extracted from four sources, recorded using five clinical terminologies and stored in different schemas. The aims of our research were to: (a) develop a semi-supervised approach for bootstrapping EHR phenotyping algorithms in UKB EHR, and (b) to evaluate our approach by implementing and evaluating phenotypes for 31 common biomarkers. Materials and Methods: We describe an algorithmic approach to phenotyping biomarkers in primary care EHR involving (a) bootstrapping definitions using existing phenotypes, (b) excluding generic, rare, or semantically distant terms, (c) forward-mapping terminology terms, (d) expert review, and (e) data extraction. We evaluated the phenotypes by assessing the ability to reproduce known epidemiological associations with all-cause mortality using Cox proportional hazards models. Results: We created and evaluated phenotyping algorithms for 31 biomarkers many of which are directly related to COVID-19 complications, for example diabetes, cardiovascular disease, respiratory disease. Our algorithm identified 1651 Read v2 and Clinical Terms Version 3 terms and automatically excluded 1228 terms. Clinical review excluded 103 terms and included 44 terms, resulting in 364 terms for data extraction (sensitivity 0.89, specificity 0.92). We extracted 38 190 682 events and identified 220 978 participants with at least one biomarker measured. Discussion and conclusion: Bootstrapping phenotyping algorithms from similar EHR can potentially address pre-existing methodological concerns that undermine the outputs of biomarker discovery pipelines and provide research-quality phenotyping algorithms

    Seatbelt use and risk of major injuries sustained by vehicle occupants during motor-vehicle crashes: A systematic review and meta-analysis of cohort studies

    Get PDF
    BackgroundIn 2004, a World Health Report on road safety called for enforcement of measures such as seatbelt use, effective at minimizing morbidity and mortality caused by road traffic accidents. However, injuries caused by seatbelt use have also been described. Over a decade after publication of the World Health Report on road safety, this study sought to investigate the relationship between seatbelt use and major injuries in belted compared to unbelted passengers.MethodsCohort studies published in English language from 2005 to 2018 were retrieved from seven databases. Critical appraisal of studies was carried out using the Scottish Intercollegiate Guidelines Network (SIGN) checklist. Pooled risk of major injuries was assessed using the random effects meta-analytic model. Heterogeneity was quantified using I-squared and Tau-squared statistics. Funnel plots and Egger's test were used to investigate publication bias. This review is registered in PROSPERO (CRD42015020309).ResultsEleven studies, all carried out in developed countries were included. Overall, the risk of any major injury was significantly lower in belted passengers compared to unbelted passengers (RR 0.47; 95%CI, 0.29 to 0.80; I-2=99.7; P=0.000). When analysed by crash types, belt use significantly reduced the risk of any injury (RR 0.35; 95%CI, 0.24 to 0.52). Seatbelt use reduces the risk of facial injuries (RR=0.56, 95% CI=0.37 to 0.84), abdominal injuries (RR=0.87; 95% CI=0.78 to 0.98) and, spinal injuries (RR=0.56, 95% CI=0.37 to 0.84). However, we found no statistically significant difference in risk of head injuries (RR=0.49; 95% CI=0.22 to 1.08), neck injuries (RR=0.69: 95%CI 0.07 to 6.44), thoracic injuries (RR 0.96, 95%CI, 0.74 to 1.24), upper limb injuries (RR=1.05, 95%CI 0.83 to 1.34) and lower limb injuries (RR=0.77, 95%CI 0.58 to 1.04) between belted and non-belted passengers.ConclusionIn sum, the risk of most major road traffic injuries is lower in seatbelt users. Findings were inconclusive regarding seatbelt use and susceptibility to thoracic, head and neck injuries during road traffic accidents. Awareness should be raised about the dangers of inadequate seatbelt use. Future research should aim to assess the effects of seatbelt use on major injuries by crash type

    ZEB1 Links p63 and p73 in a Novel Neuronal Survival Pathway Rapidly Induced in Response to Cortical Ischemia

    Get PDF
    Background: Acute hypoxic/ischemic insults to the forebrain, often resulting in significant cellular loss of the cortical parenchyma, are a major cause of debilitating injury in the industrialized world. A clearer understanding of the pro-death/ pro-survival signaling pathways and their downstream targets is critical to the development of therapeutic interventions to mitigate permanent neurological damage. Methodology/Principal Findings: We demonstrate here that the transcriptional repressor ZEB1, thought to be involved in regulating the timing and spatial boundaries of basic-Helix-Loop-Helix transactivator-mediated neurogenic determination/ differentiation programs, functions to link a pro-survival transcriptional cascade rapidly induced in cortical neurons in response to experimentally induced ischemia. Employing histological, tissue culture, and molecular biological read-outs, we show that this novel pro-survival response, initiated through the rapid induction of p63, is mediated ultimately by the transcriptional repression of a pro-apoptotic isoform of p73 by ZEB1. We show further that this phylogenetically conserved pathway is induced as well in the human cortex subjected to episodes of clinically relevant stroke. Conclusions/Significance: The data presented here provide the first evidence that ZEB1 induction is part of a protective response by neurons to ischemia. The stroke-induced increase in ZEB1 mRNA and protein levels in cortical neurons is both developmentally and phylogenetically conserved and may therefore be part of a fundamental cellular response to thi

    Progression to AIDS in South Africa Is Associated with both Reverting and Compensatory Viral Mutations

    Get PDF
    We lack the understanding of why HIV-infected individuals in South Africa progress to AIDS. We hypothesised that in end-stage disease there is a shifting dynamic between T cell imposed immunity and viral immune escape, which, through both compensatory and reverting viral mutations, results in increased viral fitness, elevated plasma viral loads and disease progression. We explored how T cell responses, viral adaptation and viral fitness inter-relate in South African cohorts recruited from Bloemfontein, the Free State (n = 278) and Durban, KwaZulu-Natal (n = 775). Immune responses were measured by γ-interferon ELISPOT assays. HLA-associated viral polymorphisms were determined using phylogenetically corrected techniques, and viral replication capacity (VRC) was measured by comparing the growth rate of gag-protease recombinant viruses against recombinant NL4-3 viruses. We report that in advanced disease (CD4 counts <100 cells/µl), T cell responses narrow, with a relative decline in Gag-directed responses (p<0.0001). This is associated with preserved selection pressure at specific viral amino acids (e.g., the T242N polymorphism within the HLA-B*57/5801 restricted TW10 epitope), but with reversion at other sites (e.g., the T186S polymorphism within the HLA-B*8101 restricted TL9 epitope), most notably in Gag and suggestive of “immune relaxation”. The median VRC from patients with CD4 counts <100 cells/µl was higher than from patients with CD4 counts ≥500 cells/µl (91.15% versus 85.19%, p = 0.0004), potentially explaining the rise in viral load associated with disease progression. Mutations at HIV Gag T186S and T242N reduced VRC, however, in advanced disease only the T242N mutants demonstrated increasing VRC, and were associated with compensatory mutations (p = 0.013). These data provide novel insights into the mechanisms of HIV disease progression in South Africa. Restoration of fitness correlates with loss of viral control in late disease, with evidence for both preserved and relaxed selection pressure across the HIV genome. Interventions that maintain viral fitness costs could potentially slow progression

    Rapid and bi-directional regulation of AMPA receptor phosphorylation and trafficking by JNK

    Get PDF
    Jun N-terminal kinases (JNKs) are implicated in various neuropathological conditions. However, physiological roles for JNKs in neurons remain largely unknown, despite the high expression level of JNKs in brain. Here, using bioinformatic and biochemical approaches, we identify the AMPA receptor GluR2L and GluR4 subunits as novel physiological JNK substrates in vitro, in heterologous cells and in neurons. Consistent with this finding, GluR2L and GluR4 associate with specific JNK signaling components in the brain. Moreover, the modulation of the novel JNK sites in GluR2L and GluR4 is dynamic and bi-directional, such that phosphorylation and de-phosphorylation are triggered within minutes following decreases and increases in neuronal activity, respectively. Using live-imaging techniques to address the functional consequence of these activity-dependent changes we demonstrate that the novel JNK site in GluR2L controls reinsertion of internalized GluR2L back to the cell surface following NMDA treatment, without affecting basal GluR2L trafficking. Taken together, our results demonstrate that JNK directly regulates AMPA-R trafficking following changes in neuronal activity in a rapid and bi-directional manner

    Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping

    Get PDF
    To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks
    corecore