172 research outputs found
Impaired development of the cerebral cortex in infants with congenital heart disease is correlated to reduced cerebral oxygen delivery
Neurodevelopmental impairment is the most common comorbidity associated with complex congenital heart disease (CHD), while the underlying biological mechanism remains unclear. We hypothesised that impaired cerebral oxygen delivery in infants with CHD is a cause of impaired cortical development, and predicted that cardiac lesions most associated with reduced cerebral oxygen delivery would demonstrate the greatest impairment of cortical development. We compared 30 newborns with complex CHD prior to surgery and 30 age-matched healthy controls using brain MRI. The cortex was assessed using high resolution, motion-corrected T2-weighted images in natural sleep, analysed using an automated pipeline. Cerebral oxygen delivery was calculated using phase contrast angiography and pre-ductal pulse oximetry, while regional cerebral oxygen saturation was estimated using near-infrared spectroscopy. We found that impaired cortical grey matter volume and gyrification index in newborns with complex CHD was linearly related to reduced cerebral oxygen delivery, and that cardiac lesions associated with the lowest cerebral oxygen delivery were associated with the greatest impairment of cortical development. These findings suggest that strategies to improve cerebral oxygen delivery may help reduce brain dysmaturation in newborns with CHD, and may be most relevant for children with CHD whose cardiac defects remain unrepaired for prolonged periods after birth
Quasispecies Theory and the Behavior of RNA Viruses
A large number of medically important viruses, including HIV, hepatitis C virus, and influenza, have RNA genomes. These viruses replicate with extremely high mutation rates and exhibit significant genetic diversity. This diversity allows a viral population to rapidly adapt to dynamic environments and evolve resistance to vaccines and antiviral drugs. For the last 30 years, quasispecies theory has provided a population-based framework for understanding RNA viral evolution. A quasispecies is a cloud of diverse variants that are genetically linked through mutation, interact cooperatively on a functional level, and collectively contribute to the characteristics of the population. Many predictions of quasispecies theory run counter to traditional views of microbial behavior and evolution and have profound implications for our understanding of viral disease. Here, we discuss basic principles of quasispecies theory and describe its relevance for our understanding of viral fitness, virulence, and antiviral therapeutic strategy
Does Mutational Robustness Inhibit Extinction by Lethal Mutagenesis in Viral Populations?
Lethal mutagenesis is a promising new antiviral therapy that kills a virus by raising its mutation rate. One potential shortcoming of lethal mutagenesis is that viruses may resist the treatment by evolving genomes with increased robustness to mutations. Here, we investigate to what extent mutational robustness can inhibit extinction by lethal mutagenesis in viruses, using both simple toy models and more biophysically realistic models based on RNA secondary-structure folding. We show that although the evolution of greater robustness may be promoted by increasing the mutation rate of a viral population, such evolution is unlikely to greatly increase the mutation rate required for certain extinction. Using an analytic multi-type branching process model, we investigate whether the evolution of robustness can be relevant on the time scales on which extinction takes place. We find that the evolution of robustness matters only when initial viral population sizes are small and deleterious mutation rates are only slightly above the level at which extinction can occur. The stochastic calculations are in good agreement with simulations of self-replicating RNA sequences that have to fold into a specific secondary structure to reproduce. We conclude that the evolution of mutational robustness is in most cases unlikely to prevent the extinction of viruses by lethal mutagenesis
Abnormal Microstructural Development of the Cerebral Cortex in Neonates With Congenital Heart Disease Is Associated With Impaired Cerebral Oxygen Delivery.
Background Abnormal macrostructural development of the cerebral cortex has been associated with hypoxia in infants with congenital heart disease ( CHD ). Animal studies have suggested that hypoxia results in cortical dysmaturation at the cellular level. New magnetic resonance imaging techniques offer the potential to investigate the relationship between cerebral oxygen delivery and cortical microstructural development in newborn infants with CHD . Methods and Results We measured cortical macrostructural and microstructural properties in 48 newborn infants with serious or critical CHD and 48 age-matched healthy controls. Cortical volume and gyrification index were calculated from high-resolution structural magnetic resonance imaging. Neurite density and orientation dispersion indices were modeled using high-angular-resolution diffusion magnetic resonance imaging. Cerebral oxygen delivery was estimated in infants with CHD using phase contrast magnetic resonance imaging and preductal pulse oximetry. We used gray matter-based spatial statistics to examine voxel-wise group differences in cortical microstructure. Microstructural development of the cortex was abnormal in 48 infants with CHD , with regions of increased fractional anisotropy and reduced orientation dispersion index compared with 48 healthy controls, correcting for gestational age at birth and scan (family-wise error corrected for multiple comparisons at P<0.05). Regions of reduced cortical orientation dispersion index in infants with CHD were related to impaired cerebral oxygen delivery ( R2=0.637; n=39). Cortical orientation dispersion index was associated with the gyrification index ( R2=0.589; P<0.001; n=48). Conclusions This study suggests that the primary component of cerebral cortex dysmaturation in CHD is impaired dendritic arborization, which may underlie abnormal macrostructural findings reported in this population, and that the degree of impairment is related to reduced cerebral oxygen delivery
Genomic structure and insertion sites of Helicobacter pylori prophages from various geographical origins
We present the full genomic sequences, insertion sites and phylogenetic analysis of 28 prophages found in H. pylori isolates from patients of distinct disease types, ranging from gastritis to gastric cancer, and geographic origins, covering most continents. The gentic diversity of H pylori is known to be influenced by these genomic elements including prophages who’s geneomes range from 22.6 to 33.0 Kbp. There was a high conservation of integration site shared in over 50% of cases with greater than 40% or prophage genomes harbouring insertion sequences (IS). Furthermore prophage genomes present a robust phylogeographic pattern, revealing four distinct clusters: one African, one Asian and two European prophage populations. There was evidence of recombination within the genome of some prophages, which resulted in genome mosaics composed by different populations, which may yield additional H. pylori phenotypes
Nogo-B is associated with cytoskeletal structures in human monocyte-derived macrophages
<p>Abstract</p> <p>Background</p> <p>The reticulon Nogo-B participates in cellular and immunological processes in murine macrophages. Since leukocytes are an essential part of the immune system in health and disease, we decided to investigate the expression of Nogo-A, Nogo-B and Nogo-C in different human immune cell subpopulations. Furthermore, we analyzed the localization of Nogo-B in human monocyte-derived macrophages by indirect immunofluorescence stainings to gain further insight into its possible function.</p> <p>Findings</p> <p>We describe an association of Nogo-B with cytoskeletal structures and the base of filopodia, but not with focal or podosomal adhesion sites of monocyte-derived macrophages. Nogo-B positive structures are partially co-localized with RhoA staining and Rac1 positive membrane ruffles. Furthermore, Nogo-B is associated with the tubulin network, but not accumulated in the Golgi region. Although Nogo-B is present in the endoplasmic reticulum, it can also be translocated to large cell protrusions or the trailing end of migratory cells, where it is homogenously distributed.</p> <p>Conclusions</p> <p>Two different Nogo-B staining patterns can be distinguished in macrophages: firstly we observed ER-independent Nogo-B localization in cell protrusions and at the trailing end of migrating cells. Secondly, the localization of Nogo-B in actin/RhoA/Rac1 positive regions supports an influence on cytoskeletal organization. To our knowledge this is the first report on Nogo-B expression at the base of filopodia, thus providing further insight into the distribution of this protein.</p
Counteracting Quasispecies Adaptability: Extinction of a Ribavirin-Resistant Virus Mutant by an Alternative Mutagenic Treatment
[Background] Lethal mutagenesis, or virus extinction promoted by mutagen-induced elevation of mutation rates of viruses,
may meet with the problem of selection of mutagen-resistant variants, as extensively documented for standard, nonmutagenic
antiviral inhibitors. Previously, we characterized a mutant of foot-and-mouth disease virus that included in its
RNA-dependent RNA polymerase replacement M296I that decreased the sensitivity of the virus to the mutagenic nucleoside
analogue ribavirin.[Methodology and Principal Findings] Replacement M296I in the viral polymerase impedes the extinction of the mutant
foot-and-mouth disease virus by elevated concentrations of ribavirin. In contrast, wild type virus was extinguished by the
same ribavirin treatment and, interestingly, no mutants resistant to ribavirin were selected from the wild type populations.
Decreases of infectivity and viral load of the ribavirin-resistant M296I mutant were attained with a combination of the
mutagen 5-fluorouracil and the non-mutagenic inhibitor guanidine hydrocloride. However, extinction was achieved with a
sequential treatment, first with ribavirin, and then with a minimal dose of 5-fluorouracil in combination with guanidine
hydrochloride. Both, wild type and ribavirin-resistant mutant M296I exhibited equal sensitivity to this combination,
indicating that replacement M296I in the polymerase did not confer a significant cross-resistance to 5-fluorouracil. We
discuss these results in relation to antiviral designs based on lethal mutagenesis[Conclusions] (i) When dominant in the population, a mutation that confers partial resistance to a mutagenic agent can
jeopardize virus extinction by elevated doses of the same mutagen. (ii) A wild type virus, subjected to identical high
mutagenic treatment, need not select a mutagen-resistant variant, and the population can be extinguished. (iii) Extinction
of the mutagen-resistant variant can be achieved by a sequential treatment of a high dose of the same mutagen, followed
by a combination of another mutagen with an antiviral inhibitor.Work supported by grants BFU2005-00863, BFU2008-02816/BMC, Proyecto Intramural de Frontera del CSIC 200820FO191, FIPSE 36558/06, and
Fundacio´n Ramo´n Areces. CIBERehd is funded by Instituto de Salud Carlos III. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscriptPeer reviewe
Multilocus genotyping reveals high heterogeneity and strong local population structure of the Plasmodium vivax population in the Peruvian Amazon
<p>Abstract</p> <p>Background</p> <p>Peru is one of the Latin American countries with the highest malaria burden, mainly due to <it>Plasmodium vivax </it>infections. However, little is known about <it>P. vivax </it>transmission dynamics in the Peruvian Amazon, where most malaria cases occur. The genetic diversity and population structure of <it>P. vivax </it>isolates collected in different communities around Iquitos city, the capital of the Peruvian Amazon, was determined.</p> <p>Methods</p> <p><it>Plasmodium vivax </it>population structure was determined by multilocus genotyping with 16 microsatellites on 159 <it>P. vivax </it>infected blood samples (mono-infections) collected in four sites around Iquitos city. The population characteristics were assessed only in samples with monoclonal infections (n = 94), and the genetic diversity was determined by calculating the expected heterozygosity and allelic richness. Both linkage disequilibrium and the genetic differentiation (<it>θ</it>) were estimated.</p> <p>Results</p> <p>The proportion of polyclonal infections varied substantially by site (11% - 70%), with the expected heterozygosity ranging between 0.44 and 0.69; no haplotypes were shared between the different populations. Linkage disequilibrium was present in all populations (<it>I</it><sub>A</sub><sup>S </sup>0.14 - 0.61) but was higher in those with fewer polyclonal infections, suggesting inbreeding and a clonal population structure. Strong population differentiation (<it>θ </it>= 0.45) was found and the Bayesian inference cluster analysis identified six clusters based on distinctive allele frequencies.</p> <p>Conclusion</p> <p>The <it>P. vivax </it>populations circulating in the Peruvian Amazon basin are genetically diverse, strongly differentiated and they have a low effective recombination rate. These results are in line with the low and clustered pattern of malaria transmission observed in the region around Iquitos city.</p
Potential Benefits of Sequential Inhibitor-Mutagen Treatments of RNA Virus Infections
Lethal mutagenesis is an antiviral strategy consisting of virus extinction associated with enhanced mutagenesis. The use of non-mutagenic antiviral inhibitors has faced the problem of selection of inhibitor-resistant virus mutants. Quasispecies dynamics predicts, and clinical results have confirmed, that combination therapy has an advantage over monotherapy to delay or prevent selection of inhibitor-escape mutants. Using ribavirin-mediated mutagenesis of foot-and-mouth disease virus (FMDV), here we show that, contrary to expectations, sequential administration of the antiviral inhibitor guanidine (GU) first, followed by ribavirin, is more effective than combination therapy with the two drugs, or than either drug used individually. Coelectroporation experiments suggest that limited inhibition of replication of interfering mutants by GU may contribute to the benefits of the sequential treatment. In lethal mutagenesis, a sequential inhibitor-mutagen treatment can be more effective than the corresponding combination treatment to drive a virus towards extinction. Such an advantage is also supported by a theoretical model for the evolution of a viral population under the action of increased mutagenesis in the presence of an inhibitor of viral replication. The model suggests that benefits of the sequential treatment are due to the involvement of a mutagenic agent, and to competition for susceptible cells exerted by the mutant spectrum. The results may impact lethal mutagenesis-based protocols, as well as current antiviral therapies involving ribavirin
- …