36 research outputs found

    Trajectory of vitamin D status during pregnancy in relation to neonatal birth size and fetal survival: a prospective cohort study

    Get PDF
    Background: We investigated the associations between vitamin D status in early and late pregnancy with neonatal small for gestational age (SGA), low birth weight (LBW) and preterm delivery. Furthermore, associations between vitamin D status and pregnancy loss were studied. Methods: Serum 25-hydroxyvitamin D (25OHD) was sampled in gestational week ≤ 16 (trimester 1 (T1), N = 2046) and > 31 (trimester 3 (T3), N = 1816) and analysed using liquid chromatography tandem mass spectrometry. Pregnant women were recruited at antenatal clinics in south-west Sweden at latitude 57–58°N. Gestational and neonatal data were retrieved from medical records. Multiple gestations and terminated pregnancies were excluded from the analyses. SGA was defined as weight and/or length at birth < 2 SD of the population mean and LBW as < 2500 g. Preterm delivery was defined as delivery < 37 + 0 gestational weeks and pregnancy loss as spontaneous abortion or intrauterine fetal death. Associations between neonatal outcomes and 25OHD at T1, T3 and change in 25OHD (T3-T1) were studied using logistic regression. Results: T1 25OHD was negatively associated with pregnancy loss and 1 nmol/L increase in 25OHD was associated with 1% lower odds of pregnancy loss (OR 0.99, p = 0.046). T3 25OHD ≥ 100 nmol/L (equal to 40 ng/ml) was associated with lower odds of SGA (OR 0.3, p = 0.031) and LBW (OR 0.2, p = 0.046), compared to vitamin D deficiency (25OHD < 30 nmol/L, or 12 ng/ml). Women with a ≥ 30 nmol/L increment in 25OHD from T1 to T3 had the lowest odds of SGA, LBW and preterm delivery. Conclusions: Vitamin D deficiency in late pregnancy was associated with higher odds of SGA and LBW. Lower 25OHD in early pregnancy was only associated with pregnancy loss. Vitamin D status trajectory from early to late pregnancy was inversely associated with SGA, LBW and preterm delivery with the lowest odds among women with the highest increment in 25OHD. Thus, both higher vitamin D status in late pregnancy and gestational vitamin D status trajectory can be suspected to play a role in healthy pregnancy

    1H-NMR-Based Metabolic Profiling of Maternal and Umbilical Cord Blood Indicates Altered Materno-Foetal Nutrient Exchange in Preterm Infants

    Get PDF
    Background: Adequate foetal growth is primarily determined by nutrient availability, which is dependent on placental nutrient transport and foetal metabolism. We have used 1H nuclear magnetic resonance (NMR) spectroscopy to probe the metabolic adaptations associated with premature birth. Methodology: The metabolic profile in 1H NMR spectra of plasma taken immediately after birth from umbilical vein, umbilical artery and maternal blood were recorded for mothers delivering very-low-birth-weight (VLBW) or normo-ponderal full-term (FT) neonates. Principal Findings: Clear distinctions between maternal and cord plasma of all samples were observed by principal component analysis (PCA). Levels of amino acids, glucose, and albumin-lysyl in cord plasma exceeded those in maternal plasma, whereas lipoproteins (notably low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) and lipid levels were lower in cord plasma from both VLBW and FT neonates. The metabolic signature of mothers delivering VLBW infants included decreased levels of acetate and increased levels of lipids, pyruvate, glutamine, valine and threonine. Decreased levels of lipoproteins glucose, pyruvate and albumin-lysyl and increased levels of glutamine were characteristic of cord blood (both arterial and venous) from VLBW infants, along with a decrease in levels of several amino acids in arterial cord blood. Conclusion: These results show that, because of its characteristics and simple non-invasive mode of collection, cord plasma is particularly suited for metabolomic analysis even in VLBW infants and provides new insights into the materno-foetal nutrient exchange in preterm infants

    Investigation of relationship between vitamin D status and reproductive fitness in Scottish hill sheep

    Get PDF
    There is a growing interest in the influence of vitamin D on ovine non-skeletal health. The aim of this study was to explore the relationship between pre-mating vitamin D status, as assessed by serum concentrations of 25-Hydroxyvitamin D [25(OH)D; comprising D2 and D3] and subsequent reproductive performance of genetically unimproved Scottish Blackface (UBF), genetically improved Scottish Blackface (IBF) and Lleyn ewes kept under Scottish hill conditions. 25-Hydroxyvitamin D2 (25(OH)D2) and 25-Hydroxyvitamin D3 (25(OH)D3) concentrations were determined in serum samples harvested in November from ewes grazed outdoors. There were no significant differences in 25(OH)D2concentrations amongst the 3 genotypes. Lleyn ewes had significantly higher 25(OH)D3 and 25(OH)D concentrations than both Scottish Blackface ewe genotypes, whereas these vitamin D parameters did not differ significantly between the UBF and IBF ewes. Concentrations of 25(OH)D3 and 25(OH)D were positively associated with subsequent birth weights of singleton and of twin lamb litters. No significant associations between vitamin D status and number of lambs born or weaned per ewe were found. This study demonstrates that concentrations of cutaneously-derived 25(OH)D3, but not of orally consumed 25(OH)D2, differed between breeds. The positive association between ewe vitamin D status and offspring birth weight highlights the need for further investigations

    Adult-Onset Obesity Reveals Prenatal Programming of Glucose-Insulin Sensitivity in Male Sheep Nutrient Restricted during Late Gestation

    Get PDF
    BACKGROUND: Obesity invokes a range of metabolic disturbances, but the transition from a poor to excessive nutritional environment may exacerbate adult metabolic dysfunction. The current study investigated global maternal nutrient restriction during early or late gestation on glucose tolerance and insulin sensitivity in the adult offspring when lean and obese. METHODS/PRINCIPAL FINDINGS: Pregnant sheep received adequate (1.0M; CE, n = 6) or energy restricted (0.7M) diet during early (1-65 days; LEE, n = 6) or late (65-128 days; LEL, n = 7) gestation (term approximately 147 days). Subsequent offspring remained on pasture until 1.5 years when all received glucose and insulin tolerance tests (GTT & ITT) and body composition determination by dual energy x-ray absorptiometry (DXA). All animals were then exposed to an obesogenic environment for 6-7 months and all protocols repeated. Prenatal dietary treatment had no effect on birth weight or on metabolic endpoints when animals were 'lean' (1.5 years). Obesity revealed generalised metabolic 'inflexibility' and insulin resistance; characterised by blunted excursions of plasma NEFA and increased insulin(AUC) (from 133 to 341 [s.e.d. 26] ng.ml(-1).120 mins) during a GTT, respectively. For LEL vs. CE, the peak in plasma insulin when obese was greater (7.8 vs. 4.7 [s.e.d. 1.1] ng.ml(-1)) and was exacerbated by offspring sex (i.e. 9.8 vs. 4.4 [s.e.d. 1.16] ng.ml(-1); LEL male vs. CE male, respectively). Acquisition of obesity also significantly influenced the plasma lipid and protein profile to suggest, overall, greater net lipogenesis and reduced protein metabolism. CONCLUSIONS: This study indicates generalised metabolic dysfunction with adult-onset obesity which also exacerbates and 'reveals' programming of glucose-insulin sensitivity in male offspring prenatally exposed to maternal undernutrition during late gestation. Taken together, the data suggest that metabolic function appears little compromised in young prenatally 'programmed' animals so long as weight is adequately controlled. Nutritional excess in adulthood exacerbates any programmed phenotype, indicating greater vigilance over weight control is required for those individuals exposed to nutritional thrift during gestation

    Regulation of human trophoblast gene expression by endogenous retroviruses.

    No full text
    The placenta is a fast-evolving organ with large morphological and histological differences across eutherians, but the genetic changes driving placental evolution have not been fully elucidated. Transposable elements, through their capacity to quickly generate genetic variation and affect host gene regulation, may have helped to define species-specific trophoblast gene expression programs. Here we assess the contribution of transposable elements to human trophoblast gene expression as enhancers or promoters. Using epigenomic data from primary human trophoblast and trophoblast stem-cell lines, we identified multiple endogenous retrovirus families with regulatory potential that lie close to genes with preferential expression in trophoblast. These largely primate-specific elements are associated with inter-species gene expression differences and are bound by transcription factors with key roles in placental development. Using genetic editing, we demonstrate that several elements act as transcriptional enhancers of important placental genes, such as CSF1R and PSG5. We also identify an LTR10A element that regulates ENG expression, affecting secretion of soluble endoglin, with potential implications for preeclampsia. Our data show that transposons have made important contributions to human trophoblast gene regulation, and suggest that their activity may affect pregnancy outcomes

    The Mechanisms and Regulation of Placental Amino Acid Transport to the Human Foetus

    No full text
    The mechanisms by which amino acids are transferred across the human placenta are fundamental to our understanding of foetal nutrition. Amino acid transfer across the human placenta is dependent on transport across both the microvillous and basal plasma membranes of the placental syncytiotrophoblast, and on metabolism within the syncytiotrophoblast. Although the principles underlying uptake of amino acids across the microvillous plasma membrane are well understood, the extent to which amino acids are metabolised within human placenta and the mechanisms by which amino acids are transported out of the placenta across the basal plasma membrane are not well understood. Understanding the mechanisms and regulation of amino acid transport is necessary to understand the causes of intrauterine growth restriction in human pregnancy

    Placental uptake and metabolism of 25(OH)vitamin D determine its activity within the fetoplacental unit

    Get PDF
    Funder: NIHR Clinical LectureshipFunder: Gerald Kerkut Charitable TrustFunder: Rank PrizePregnancy 25-hydroxyvitamin D [25(OH)D] concentrations are associated with maternal and fetal health outcomes. Using physiological human placental perfusion and villous explants, we investigate the role of the placenta in regulating the relationships between maternal 25(OH)D and fetal physiology. We demonstrate active placental uptake of 25(OH)D3 by endocytosis, placental metabolism of 25(OH)D3 into 24,25-dihydroxyvitamin D3 and active 1,25-dihydroxyvitamin D [1,25(OH)2D3], with subsequent release of these metabolites into both the maternal and fetal circulations. Active placental transport of 25(OH)D3 and synthesis of 1,25(OH)2D3 demonstrate that fetal supply is dependent on placental function rather than simply the availability of maternal 25(OH)D3. We demonstrate that 25(OH)D3 exposure induces rapid effects on the placental transcriptome and proteome. These map to multiple pathways central to placental function and thereby fetal development, independent of vitamin D transfer. Our data suggest that the underlying epigenetic landscape helps dictate the transcriptional response to vitamin D treatment. This is the first quantitative study demonstrating vitamin D transfer and metabolism by the human placenta, with widespread effects on the placenta itself. These data demonstrate a complex interplay between vitamin D and the placenta and will inform future interventions using vitamin D to support fetal development and maternal adaptations to pregnancy.CS was funded by a Gerald Kerkut Charitable Trust studentship and BA by Rank Prize and University of Southampton Vice Chancellor’s Studentships plus the MRC. KMG was supported by the UK Medical Research Council (MC_UU_12011/4), the National Institute for Health Research (NIHR Senior Investigator [NF-SI-0515-10042], NIHR Southampton 1000DaysPlus Global Nutrition Research Group [17/63/154], and NIHR Southampton Biomedical Research Centre [IS-BRC-1215-20004]), British Heart Foundation (RG/15/17/3174) and the US National Institute on Aging of the National Institutes of Health (Award No. U24AG047867). KSJ was supported by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (ISBRC-1215-20014). The NIHR Cambridge Biomedical Research Centre is a partnership between Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge, funded by the NIHR. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care. Experimental work performed by KSJ and FH at MRC. EWL was supported by Dr Ann Prentice (UK Medical Research Council U105960371). The SWS has been supported by grants from Medical Research Council (MRC) (4050502589 [MRC LEU]), Dunhill Medical Trust, British Heart Foundation, Food Standards Agency, National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, NIHR Oxford Biomedical Research Centre, University of Oxford, and the European Union’s Seventh Framework Programme (FP7/2007-2013), project EarlyNutrition, under grant agreement 289346 and the European Union’s Horizon 2020 research and innovation program (LIFECYCLE, grant agreement no. 733206). EC has been supported by the Wellcome Trust (201268/Z/16/Z) and an NIHR Clinical Lectureship. Work leading to these results was supported by the BBSRC (HDHL-Biomarkers, BB/P028179/1), as part of the ALPHABET project, supported by an award made through the ERA-Net on Biomarkers for Nutrition and Health (ERA HDHL), Horizon 2020 grant agreement number 696295. The proteomic analyses (SDG and AM) were financially supported by the National Institutes of Health (R21AI122389) and the Beckman Institute at the California Institute of Technology. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement InvADeRS no. 841172 to JMF. The electron microscopy image in Figure 2 was produced with help of the Biomedical imaging unit, Faculty of Medicine, University of Southampton
    corecore