445 research outputs found

    Autumn MIST 2017

    Get PDF
    Jasmine Sandhu, Georgina Graham, Sarah Bentley and John Coxon report on the annual Magnetosphere, Ionosphere, and Solar–Terrestrial (MIST) meeting, highlighting science results from the Cassini and Juno missions

    Presymptomatic risk assessment for chronic non-communicable diseases

    Get PDF
    The prevalence of common chronic non-communicable diseases (CNCDs) far overshadows the prevalence of both monogenic and infectious diseases combined. All CNCDs, also called complex genetic diseases, have a heritable genetic component that can be used for pre-symptomatic risk assessment. Common single nucleotide polymorphisms (SNPs) that tag risk haplotypes across the genome currently account for a non-trivial portion of the germ-line genetic risk and we will likely continue to identify the remaining missing heritability in the form of rare variants, copy number variants and epigenetic modifications. Here, we describe a novel measure for calculating the lifetime risk of a disease, called the genetic composite index (GCI), and demonstrate its predictive value as a clinical classifier. The GCI only considers summary statistics of the effects of genetic variation and hence does not require the results of large-scale studies simultaneously assessing multiple risk factors. Combining GCI scores with environmental risk information provides an additional tool for clinical decision-making. The GCI can be populated with heritable risk information of any type, and thus represents a framework for CNCD pre-symptomatic risk assessment that can be populated as additional risk information is identified through next-generation technologies.Comment: Plos ONE paper. Previous version was withdrawn to be updated by the journal's pdf versio

    The elusive archaeology of Kongo urbanism: the case of Kindoki, Mbanza Nsundi (Lower Congo, DRC)

    Get PDF
    We present here results, analyses and an in-depth historical contextualisation of the fieldwork undertaken in 2012 and 2013 at the Kindoki site in the Lower Congo (DRC). This site is linked with Mbanza Nsundi, one of the Kongo Kingdom's provincial capitals, which turns out to be archaeologically 'elusive'. Pinpointing its location proved to be particularly challenging. To this end, a historically-informed excavation methodology was developed that was never implemented in Central Africa before. We combined a strategy of systematic test pits with a large-scale 50 m grid approach. A cemetery was identified on Kindoki Hill with distinct but contemporaneous quarters of a 16th-17thcenturies settlement on both sides. The cemetery itself contains mainly 18th-century burials, in all likelihood of successive Nsundi rulers. The foreign, especially Portuguese, ceramics excavated on the hilltop and the hundreds of Venetian and likely Bavarian beads found in the graves are indicative of Mbanza Nsundi's connection to trade routes linking the Atlantic coast with the Pool region. The most striking discovery is that of a previously unknown type of comb-impressed pottery, from a pit with a calibrated radiocarbon date AD 1294-1393 (2 sigma). This suggests that a settlement had been developing at Kindoki since at least the 14th century, which allows us, for the very first time, to spatially bridge Kongo history and 'prehistory'. For the entire Lower Congo region only three 14C dates posterior to AD 1000 were available before the start of the KongoKing project, twelve have been added for just Kindoki

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Target Deletion of the Cytoskeleton-Associated Protein Palladin Does Not Impair Neurite Outgrowth in Mice

    Get PDF
    Palladin is an actin cytoskeleton–associated protein which is crucial for cell morphogenesis and motility. Previous studies have shown that palladin is localized to the axonal growth cone in neurons and may play an important role in axonal extension. Previously, we have generated palladin knockout mice which display cranial neural tube closure defect and embryonic lethality before embryonic day 15.5 (E15.5). To further study the role of palladin in the developing nervous system, we examined the innervation of palladin-deficient mouse embryos since the 200 kd, 140 kd, 90–92 kd and 50 kd palladin isoforms were undetectable in the mutant mouse embryo brain. Contrary to the results of previous studies, we found no inhibition of the axonal extension in palladin-deficient mouse embryos. The cortical neurons derived from palladin-deficient mice also showed no significant difference in neurite outgrowth as compared with those from wild-type mice. Moreover, no difference was found in neurite outgrowth of neural stem cell derived-neurons between palladin-deficient mice and wild-type mice. In conclusion, these results suggest that palladin is dispensable for normal neurite outgrowth in mice

    The family as a determinant of stunting in children living in conditions of extreme poverty: a case-control study

    Get PDF
    BACKGROUND: Malnutrition in children can be a consequence of unfavourable socioeconomic conditions. However, some families maintain adequate nutritional status in their children despite living in poverty. The aim of this study was to ascertain whether family-related factors are determinants of stunting in young Mexican children living in extreme poverty, and whether these factors differ between rural or urban contexts. METHODS: A case-control study was conducted in one rural and one urban extreme poverty level areas in Mexico. Cases comprised stunted children aged between 6 and 23 months. Controls were well-nourished children. Independent variables were defined in five dimensions: family characteristics; family income; household allocation of resources and family organisation; social networks; and child health care. Information was collected from 108 cases and 139 controls in the rural area and from 198 cases and 211 controls in the urban area. Statistical analysis was carried out separately for each area; unconditional multiple logistic regression analyses were performed to obtain the best explanatory model for stunting. RESULTS: In the rural area, a greater risk of stunting was associated with father's occupation as farmer and the presence of family networks for child care. The greatest protective effect was found in children cared for exclusively by their mothers. In the urban area, risk factors for stunting were father with unstable job, presence of small social networks, low rate of attendance to the Well Child Program activities, breast-feeding longer than six months, and two variables within the family characteristics dimension (longer duration of parents' union and migration from rural to urban area). CONCLUSIONS: This study suggests the influence of the family on the nutritional status of children under two years of age living in extreme poverty areas. Factors associated with stunting were different in rural and urban communities. Therefore, developing and implementing health programs to tackle malnutrition should take into account such differences that are consequence of the social, economic, and cultural contexts in which the family lives

    Determinants of subject visit participation in a prospective cohort study of HTLV infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding participation in a prospective study is crucial to maintaining and improving retention rates. In 1990–92, following attempted blood donation at five blood centers, we enrolled 155 HTLV-I, 387 HTLV-II and 799 HTLV seronegative persons in a long-term prospective cohort.</p> <p>Methods</p> <p>Health questionnaires and physical exams were administered at enrollment and 2-year intervals through 2004. To examine factors influencing attendance at study visits of the cohort participants we calculated odds ratios (ORs) with generalized estimated equations (GEE) to analyze fixed and time-varying predictors of study visit participation.</p> <p>Results</p> <p>There were significant independent associations between better visit attendance and female gender (OR = 1.31), graduate education (OR = 1.86) and income > 75,000(OR=2.68).Participantsattwocenters(OR=0.47,0.67)andofBlackrace/ethnicity(OR=0.61)werelesslikelytocontinue.Highersubjectreimbursementforinterviewwasassociatedwithbettervisitattendance(OR=1.84for75,000 (OR = 2.68). Participants at two centers (OR = 0.47, 0.67) and of Black race/ethnicity (OR = 0.61) were less likely to continue. Higher subject reimbursement for interview was associated with better visit attendance (OR = 1.84 for 25 vs. $10). None of the health related variables (HTLV status, perceived health status and referral to specialty diagnostic exam for potential adverse health outcomes) significantly affected participation after controlling for demographic variables.</p> <p>Conclusion</p> <p>Increasing and maintaining participation by minority and lower socioeconomic status participants is an ongoing challenge in the study of chronic disease outcomes. Future studies should include methods to evaluate attrition and retention, in addition to primary study outcomes, including qualitative analysis of reasons for participation or withdrawal.</p

    A point mutation in cpsE renders Streptococcus pneumoniae nonencapsulated and enhances its growth, adherence and competence.

    Get PDF
    BACKGROUND: The polysaccharide capsule is a major virulence factor of the important human pathogen Streptococcus pneumoniae. However, S. pneumoniae strains lacking capsule do occur. RESULTS: Here, we report a nasopharyngeal isolate of Streptococcus pneumoniae composed of a mixture of two phenotypes; one encapsulated (serotype 18C) and the other nonencapsulated, determined by serotyping, electron microscopy and fluorescence isothiocyanate dextran exclusion assay.By whole genome sequencing, we demonstrated that the phenotypes differ by a single nucleotide base pair in capsular gene cpsE (C to G change at gene position 1135) predicted to result in amino acid change from arginine to glycine at position 379, located in the cytoplasmic, enzymatically active, region of this transmembrane protein. This SNP is responsible for loss of capsule production as the phenotype is transferred with the capsule operon. The nonencapsulated variant is superior in growth in vitro and is also 117-fold more adherent to and more invasive into Detroit 562 human epithelial cells than the encapsulated variant.Expression of six competence pathway genes and one competence-associated gene was 11 to 34-fold higher in the nonencapsulated variant than the encapsulated and transformation frequency was 3.7-fold greater. CONCLUSIONS: We identified a new single point mutation in capsule gene cpsE of a clinical S. pneumoniae serotype 18C isolate sufficient to cause loss of capsule expression resulting in the co-existence of the encapsulated and nonencapsulated phenotype. The mutation caused phenotypic changes in growth, adherence to epithelial cells and transformability. Mutation in capsule gene cpsE may be a way for S. pneumoniae to lose its capsule and increase its colonization potential

    Copy Number Variation across European Populations

    Get PDF
    Genome analysis provides a powerful approach to test for evidence of genetic variation within and between geographical regions and local populations. Copy number variants which comprise insertions, deletions and duplications of genomic sequence provide one such convenient and informative source. Here, we investigate copy number variants from genome wide scans of single nucleotide polymorphisms in three European population isolates, the island of Vis in Croatia, the islands of Orkney in Scotland and the South Tyrol in Italy. We show that whereas the overall copy number variant frequencies are similar between populations, their distribution is highly specific to the population of origin, a finding which is supported by evidence for increased kinship correlation for specific copy number variants within populations
    • …
    corecore