235 research outputs found

    Tuning the Mechanical Properties of Multiarm RAFT-Based Block Copolyelectrolyte Hydrogels via Ionic Cross-Linking for 3D Cell Cultures

    Full text link
    Hydrogels that serve as native extracellular matrix (ECM) mimics are typically naturally derived hydrogels that are physically cross-linked via ionic interactions. This means rapid gelation of synthetic polymers, which give control over the chemical and physical cues in hydrogel formation. Herein, we combine the best of both systems by developing a synthetic hydrogel with ionic cross-linking of block copolyelectrolytes to rapidly create hydrogels. Reversible addition-fragmentation chain-transfer (RAFT) polymerization was used to synthesize oppositely charged polyelectrolyte molecules and, in turn, modulate the mechanical property of stiffness. The mechanical stiffness of a range of 900-3500 Pa was tuned by varying the number of charged ionic groups, the length of the polymer arms, and the polymer concentration. We demonstrate the synthetic polyelectrolyte hydrogel as an ECM mimic for three-dimensional (3D) in vitro cell models using MCF-7 breast cancer cells

    A Covalently Crosslinked Ink for Multimaterials Drop-on-Demand 3D Bioprinting of 3D Cell Cultures

    Full text link
    In vitro 3D cell models have been accepted to better recapitulate aspects of in vivo organ environment than 2D cell culture. Currently, the production of these complex in vitro 3D cell models with multiple cell types and microenvironments remains challenging and prone to human error. Here, a versatile ink comprising a 4-arm poly(ethylene glycol) (PEG)-based polymer with distal maleimide derivatives as the main ink component and a bis-thiol species as the activator that crosslinks the polymer to form the hydrogel in less than a second is reported. The rapid gelation makes the polymer system compatible with 3D bioprinting. The ink is combined with a novel drop-on-demand 3D bioprinting platform, designed specifically for producing 3D cell cultures, consisting of eight independently addressable nozzles and high-throughput printing logic for creating complex 3D cell culture models. The combination of multiple nozzles and fast printing logic enables the rapid preparation of many complex 3D cell cultures comprising multiple hydrogel environments in one structure in a standard 96-well plate format. The platform's compatibility for biological applications is validated using pancreatic ductal adenocarcinoma cancer (PDAC) and human dermal fibroblast cells with their phenotypic responses controlled by tuning the hydrogel microenvironment

    A unifying probabilistic framework for analyzing residual dipolar couplings

    Get PDF
    Residual dipolar couplings provide complementary information to the nuclear Overhauser effect measurements that are traditionally used in biomolecular structure determination by NMR. In a de novo structure determination, however, lack of knowledge about the degree and orientation of molecular alignment complicates the analysis of dipolar coupling data. We present a probabilistic framework for analyzing residual dipolar couplings and demonstrate that it is possible to estimate the atomic coordinates, the complete molecular alignment tensor, and the error of the couplings simultaneously. As a by-product, we also obtain estimates of the uncertainty in the coordinates and the alignment tensor. We show that our approach encompasses existing methods for determining the alignment tensor as special cases, including least squares estimation, histogram fitting, and elimination of an explicit alignment tensor in the restraint energy

    MRI for assessment of anal fistula

    Get PDF
    Magnetic resonance imaging (MRI) is the best imaging modality for preoperative assessment of patients with anal fistula. MRI helps to accurately demonstrate disease extension and predict prognosis. This in turn helps make therapy decisions and monitor therapy. The pertinent anatomy, fistula classification and MRI findings will be discussed

    Cold-Induced Changes in the Protein Ubiquitin

    Get PDF
    Conformational changes are essential for protein-protein and protein-ligand recognition. Here we probed changes in the structure of the protein ubiquitin at low temperatures in supercooled water using NMR spectroscopy. We demonstrate that ubiquitin is well folded down to 263 K, although slight rearrangements in the hydrophobic core occur. However, amide proton chemical shifts show non-linear temperature dependence in supercooled solution and backbone hydrogen bonds become weaker in the region that is most prone to cold-denaturation. Our data suggest that the weakening of the hydrogen bonds in the β-sheet of ubiquitin might be one of the first events that occur during cold-denaturation of ubiquitin. Interestingly, the same region is strongly involved in ubiquitin-protein complexes suggesting that this part of ubiquitin more easily adjusts to conformational changes required for complex formation

    Intensified surveillance after surgery for colorectal cancer significantly improves survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postoperative surveillance after curative resection for colorectal cancer has been demostrated to improve survival. It remains unknown however, whether intensified surveillance provides a significant benefit regarding outcome and survival. This study was aimed at comparing different surveillance strategies regarding their effect on long-term outcome.</p> <p>Methods</p> <p>Between 1990 and 2006, all curative resections for colorectal cancer were selected from our prospective colorectal cancer database. All patients were offered to follow our institution's surveillance programm according to the ASCO guidelines. We defined surveillance as "intensive" in cases where > 70% appointments were attended and the program was completed. As "minimal" we defined surveillance with < 70% of the appointments attended and an incomplete program. As "none" we defined the group which did not take part in any surveillance.</p> <p>Results</p> <p>Out of 1469 patients 858 patients underwent "intensive", 297 "minimal" and 314 "none" surveillance. The three groups were well balanced regarding biographical data and tumor characteristics. The 5-year survival rates were 79% (intensive), 76% (minimal) and 54% (none) (OR 1.480, (95% CI 1.135-1.929); <it>p </it>< 0.0001), respectively. The 10-year survival rates were 65% (intensive), 50% (minimal) and 31% (none) (<it>p </it>< 0.0001), respectively. With a median follow-up of 70 months the median time of survival was 191 months (intensive), 116 months (minimal) and 66 months (none) (<it>p </it>< 0.0001). After recurrence, the 5-year survival rates were 32% (intensive, <it>p </it>= 0.034), 13% (minimal, <it>p </it>= 0.001) and 19% (none, <it>p </it>= 0.614). The median time of survival after recurrence was 31 months (intensive, <it>p </it>< 0.0001), 21 months (minimal, <it>p </it>< 0.0001) and 16 month (none, <it>p </it>< 0.0001) respectively.</p> <p>Conclusion</p> <p>Intensive surveillance after curative resection of colorectal cancer improves survival. In cases of recurrent disease, intensive surveillance has a positive impact on patients' prognosis. Large randomized, multicenter trials are needed to substantiate these results.</p
    corecore