57 research outputs found
Flow-to-fracture transition and pattern formation in a discontinuous shear thickening fluid
Recent theoretical and experimental work suggests a frictionless-frictional transition with increasing inter-particle pressure explains the extreme solid-like response of discontinuous shear thickening suspensions. However, analysis of macroscopic discontinuous shear thickening flow in geometries other than the standard rheometry tools remain scarce. Here we use a Hele-Shaw cell geometry to visualise gas-driven invasion patterns in discontinuous shear thickening cornstarch suspensions. We plot quantitative results from pattern analysis in a volume fraction-pressure phase diagram and explain them in context of rheological measurements. We observe three distinct pattern morphologies: viscous fingering, dendritic fracturing, and system-wide fracturing, which correspond to the same packing fraction ranges as weak shear thickening, discontinuous shear thickening, and shear-jammed regimes
Drugs and herbs given to prevent hepatotoxicity of tuberculosis therapy: systematic review of ingredients and evaluation studies
Background: Drugs to protect the liver are frequently prescribed in some countries as part of treatment for tuberculosis. The biological rationale is not clear, they are expensive and may do harm. We conducted a systematic review to a) describe the ingredients of "liver protection drugs"; and b) compare the evidence base for the policy against international standards.
Methods: We searched international medical databases (MEDLINE, EMBASE, LILACS, CINAHL, Cochrane Central Register of Controlled Trials, and the specialised register of the Cochrane Infectious Diseases Group) and Chinese language databases (CNKI, VIP and WanFang) to April 2007. Our inclusion criteria were research papers that reported evaluating any liver protection drug or drugs for preventing liver damage in people taking anti-tuberculosis treatment. Two authors independently categorised and extracted data, and appraised the stated methods of evaluating their effectiveness.
Results: Eighty five research articles met our inclusion criteria, carried out in China (77), India (2), Russia (4), Ukraine (2). These articles evaluated 30 distinct types of liver protection compounds categorised as herbal preparations, manufactured herbal products, combinations of vitamins and other non-herbal substances and manufactured pharmaceutical preparations. Critical appraisal of these articles showed that all were small, poorly conducted studies, measuring intermediate outcomes. Four trials that were described as randomised controlled trials were small, had short follow up, and did not meet international standards.
Conclusion: There is no reliable evidence to support prescription of drugs or herbs to prevent liver damage in people on tuberculosis treatment
Repeat-dose sirolimus pharmacokinetics and pharmacodynamics in patients with hepatic allografts
To determine sirolimus steady-state pharmacokinetics, and to assess the relationship between time-normalized trough sirolimus concentration (C(min,TN)) and evidence of efficacy (rejection and death) and adverse reactions (stomatitis and pneumonia) in liver allograft patients
Self-Similarity in Particle-Laden Flows at Constant Volume
This paper deals with the evolution of a localized, constant-volume initial condition on an incline into a spreading descending thin-film solution. Clear fluids in this geometry are known to have a front position that moves according to a t1/3 scaling law, based on similarity-solution analysis by Huppert (Nature 300:427–429, 1982). The same dynamics are investigated for particle-laden flow using a recently proposed lubrication model and physical experiments. The analysis includes the role of a precursor in the model. In the lubrication model, the height of the precursor significantly influences the position of the fluid front, independent of particles settling in the direction of flow. By comparing theory with experiments it is shown that the t1/3 scaling law persists, to leading order, for particle-laden flows with particle settling. However, additional physics is needed in the existing lubrication models to quantitatively explain departures from clear-fluid self-similarity due to particle settling
Statistical Dynamics of Flowing Red Blood Cells by Morphological Image Processing
Blood is a dense suspension of soft non-Brownian cells of unique importance. Physiological blood flow involves complex interactions of blood cells with each other and with the environment due to the combined effects of varying cell concentration, cell morphology, cell rheology, and confinement. We analyze these interactions using computational morphological image analysis and machine learning algorithms to quantify the non-equilibrium fluctuations of cellular velocities in a minimal, quasi-two-dimensional microfluidic setting that enables high-resolution spatio-temporal measurements of blood cell flow. In particular, we measure the effective hydrodynamic diffusivity of blood cells and analyze its relationship to macroscopic properties such as bulk flow velocity and density. We also use the effective suspension temperature to distinguish the flow of normal red blood cells and pathological sickled red blood cells and suggest that this temperature may help to characterize the propensity for stasis in Virchow's Triad of blood clotting and thrombosis
- …