23 research outputs found

    Local Ugandan Production of Stable 0.2% Chlorhexidine Eye Drops

    Get PDF
    Purpose: The purpose of this study was to develop a protocol to prepare buffered chlorhexidine (CHX) eye drops (0.2% w/v) in the United Kingdom that can be reproduced at a production facility in Uganda. Buffered CHX eye drops can prevent CHX degradation and improve ocular tolerability during the treatment of fungal keratitis. Methods: Buffered CHX eye drops in amber glass containers were prepared using sodium acetate buffer at pH 5.90 to 6.75. Two commercial CHX solutions and CHX in water were used as controls. Eye drops were stored at 40°C (70% humidity, 21 months) in the United Kingdom and at ambient temperature in Uganda (30 months). High-performance liquid chromatography was used to determine CHX stability over time, and pH was monitored. Sterility was achieved using an autoclave (121°C, 15 minutes) and water bath (100°C, 30 minutes). Results: The pH of acetate-buffered CHX eye drops did not change over 21 months a40°C or at ambient temperature (30 months), whereas the pH of the unbuffered aqueouCHX displayed significant fluctuations, with an increase in acidity. The CHX concentration remained the same in both buffered and unbuffered eye-drop solutions. Eye dropsterilization was successful using an autoclave and a water bath. Conclusions: Stable, sterile, buffered CHX eye drops (pH 6.75) were successfully prepared first in the United Kingdom and then reproducibly in Uganda. This eye drops can be prepared in a hospital or pharmacy setting with limited resources, thus providing a cost-effective treatment for fungal keratitis. Translational Relevance: A protocol has been developed to prepare buffered CHX eydrops in low-and middle-income countries to treat fungal keratitis

    Genetic Population Structure in the Antarctic Benthos: Insights from the Widespread Amphipod, Orchomenella franklini

    Get PDF
    Currently there is very limited understanding of genetic population structure in the Antarctic benthos. We conducted one of the first studies of microsatellite variation in an Antarctic benthic invertebrate, using the ubiquitous amphipod Orchomenella franklini (Walker, 1903). Seven microsatellite loci were used to assess genetic structure on three spatial scales: sites (100 s of metres), locations (1–10 kilometres) and regions (1000 s of kilometres) sampled in East Antarctica at Casey and Davis stations. Considerable genetic diversity was revealed, which varied between the two regions and also between polluted and unpolluted sites. Genetic differentiation among all populations was highly significant (FST = 0.086, RST = 0.139, p<0.001) consistent with the brooding mode of development in O. franklini. Hierarchical AMOVA revealed that the majority of the genetic subdivision occurred across the largest geographical scale, with Nem≈1 suggesting insufficient gene flow to prevent independent evolution of the two regions, i.e., Casey and Davis are effectively isolated. Isolation by distance was detected at smaller scales and indicates that gene flow in O. franklini occurs primarily through stepping-stone dispersal. Three of the microsatellite loci showed signs of selection, providing evidence that localised adaptation may occur within the Antarctic benthos. These results provide insights into processes of speciation in Antarctic brooders, and will help inform the design of spatial management initiatives recently endorsed for the Antarctic benthos

    Automated High-Content Live Animal Drug Screening Using C. elegans Expressing the Aggregation Prone Serpin α1-antitrypsin Z

    Get PDF
    The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust assay designs and high throughput work-flows. Based on their small size, tissue transparency and ease of cultivation, the use of C. elegans should obviate many of the technical impediments associated with live animal drug screening. Moreover, their genetic tractability and accomplished record for providing insights into the molecular and cellular basis of human disease, should make C. elegans an ideal model system for in vivo drug discovery campaigns. The goal of this study was to determine whether C. elegans could be adapted to high-throughput and high-content drug screening strategies analogous to those developed for cell-based systems. Using transgenic animals expressing fluorescently-tagged proteins, we first developed a high-quality, high-throughput work-flow utilizing an automated fluorescence microscopy platform with integrated image acquisition and data analysis modules to qualitatively assess different biological processes including, growth, tissue development, cell viability and autophagy. We next adapted this technology to conduct a small molecule screen and identified compounds that altered the intracellular accumulation of the human aggregation prone mutant that causes liver disease in α1-antitrypsin deficiency. This study provides powerful validation for advancement in preclinical drug discovery campaigns by screening live C. elegans modeling α1-antitrypsin deficiency and other complex disease phenotypes on high-content imaging platforms

    Renal amyloidosis in children

    Get PDF
    Renal amyloidosis is a detrimental disease caused by the deposition of amyloid fibrils. A child with renal amyloidosis may present with proteinuria or nephrotic syndrome. Chronic renal failure may follow. Amyloid fibrils may deposit in other organs as well. The diagnosis is through the typical appearance on histopathology. Although chronic infections and chronic inflammatory diseases used to be the causes of secondary amyloidosis in children, the most frequent cause is now autoinflammatory diseases. Among this group of diseases, the most frequent one throughout the world is familial Mediterranean fever (FMF). FMF is typically characterized by attacks of clinical inflammation in the form of fever and serositis and high acute-phase reactants. Persisting inflammation in inadequately treated disease is associated with the development of secondary amyloidosis. The main treatment is colchicine. A number of other monogenic autoinflammatory diseases have also been identified. Among them cryopyrin-associated periodic syndrome (CAPS) is outstanding with its clinical features and the predilection to develop secondary amyloidosis in untreated cases. The treatment of secondary amyloidosis mainly depends on the treatment of the disease. However, a number of new treatments for amyloid per se are in the pipeline
    corecore