1,226 research outputs found

    Additive Manufacturable Materials for Electrochemical Biosensor Electrodes

    Get PDF
    With the impending Industrial Revolution 4.0, the information produced by sensors will be central in many applications. This includes the healthcare sector, where affordable healthcare and precision medicine are highly sought after. Electrochemical sensors have the potential to produce affordable, high sensitivity and specificity, intuitive, and rapid point‐of‐care diagnostics. Underpinning these achievements is the choice of material and the fabrication thereof. In this review, the different types of materials used in electrochemical biosensors are reported, with a focus on synthetic conductive materials. The review demonstrates that there is an abundance of materials to select from, and compositing different types of materials further widens their applicability in biosensors. In addition, the fabrication of such materials using the state‐of‐the‐art of fabrication technology, additive manufacturing (AM), is also detailed. The need for compositing is evident in AM, as the feedstock for certain AM technologies is inherently nonconductive. Both material choice and fabrication technologies limitations are also discussed to highlight opportunities for growth. The review highlights how recent technological advancements have the potential to drive the healthcare industry toward achieving its primary goals

    Optical biosensors - Illuminating the path to personalized drug dosing

    Get PDF
    Optical biosensors are low-cost, sensitive and portable devices that are poised to revolutionize the medical industry. Healthcare monitoring has already been transformed by such devices, with notable recent applications including heart rate monitoring in smartwatches and COVID-19 lateral flow diagnostic test kits. The commercial success and impact of existing optical sensors has galvanized research in expanding its application in numerous disciplines. Drug detection and monitoring seeks to benefit from the fast-approaching wave of optical biosensors, with diverse applications ranging from illicit drug testing, clinical trials, monitoring in advanced drug delivery systems and personalized drug dosing. The latter has the potential to significantly improve patients' lives by minimizing toxicity and maximizing efficacy. To achieve this, the patient's serum drug levels must be frequently measured. Yet, the current method of obtaining such information, namely therapeutic drug monitoring (TDM), is not routinely practiced as it is invasive, expensive, time-consuming and skilled labor-intensive. Certainly, optical sensors possess the capabilities to challenge this convention. This review explores the current state of optical biosensors in personalized dosing with special emphasis on TDM, and provides an appraisal on recent strategies. The strengths and challenges of optical biosensors are critically evaluated, before concluding with perspectives on the future direction of these sensors

    Inkjet drug printing onto contact lenses: Deposition optimisation and non-invasive dose verification

    Get PDF
    Inkjet printing has the potential to advance the treatment of eye diseases by printing drugs on demand onto contact lenses for localised delivery and personalised dosing, while near-infrared (NIR) spectroscopy can further be used as a quality control method for quantifying the drug but has yet to be demonstrated with contact lenses. In this study, a glaucoma therapy drug, timolol maleate, was successfully printed onto contact lenses using a modified commercial inkjet printer. The drug-loaded ink prepared for the printer was designed to match the properties of commercial ink, whilst having maximal drug loading and avoiding ocular inflammation. This setup demonstrated personalised drug dosing by printing multiple passes. Light transmittance was found to be unaffected by drug loading on the contact lens. A novel dissolution model was built, and in vitro dissolution studies showed drug release over at least 3 h, significantly longer than eye drops. NIR was used as an external validation method to accurately quantify the drug dose. Overall, the combination of inkjet printing and NIR represent a novel method for point-of-care personalisation and quantification of drug-loaded contact lenses

    Integrating pressure sensor control into semi-solid extrusion 3D printing to optimize medicine manufacturing

    Get PDF
    Semi-solid extrusion (SSE) is a three-dimensional printing (3DP) process that involves the extrusion of a gel or paste-like material via a syringe-based printhead to create the desired object. In pharmaceuticals, SSE 3DP has already been used to manufacture formulations for human clinical studies. To further support its clinical adoption, the use of a pressure sensor may provide information on the printability of the feedstock material in situ and under the exact printing conditions for quality control purposes. This study aimed to integrate a pressure sensor in an SSE pharmaceutical 3D printer for both material characterization and as a process analytical technology (PAT) to monitor the printing process. In this study, three materials of different consistency were tested (soft vaseline, gel-like mass and paste-like mass) under 12 different conditions, by changing flow rate, temperature, or nozzle diameter. The use of a pressure sensor allowed, for the first time, the characterization of rheological properties of the inks, which exhibited temperature-dependent, plastic and viscoelastic behaviours. Controlling critical material attributes and 3D printing process parameters may allow a quality by design (QbD) approach to facilitate a high-fidelity 3D printing process critical for the future of personalized medicine

    Associations of stunting in early childhood with cardiometabolic risk factors in adulthood

    Get PDF
    Abstract Early life stunting may have long-term effects on body composition, resulting in obesity-related comorbidities. We tested the hypothesis that individuals stunted in early childhood may be at higher cardiometabolic risk later in adulthood. 1753 men and 1781 women participating in the 1982 Pelotas (Brazil) birth cohort study had measurements of anthropometry, body composition, lipids, glucose, blood pressure, and other cardiometabolic traits at age 30 years. Early stunting was defined as height-for-age Z-score at age 2 years below -2 against the World Health Organization growth standards. Linear regression models were performed controlling for sex, maternal race/ethnicity, family income at birth, and birthweight. Analyses were stratified by sex when p-interaction<0.05. Stunted individuals were shorter (ÎČ=-0.71 s.d.; 95% CI: -0.78 to -0.64), had lower BMI (ÎČ=-0.14 s.d.; 95%CI: -0.25 to -0.03), fat mass (ÎČ=-0.28 s.d.; 95%CI: -0.38 to -0.17), SAFT (ÎČ=-0.16 s.d.; 95%CI: -0.26 to -0.06), systolic (ÎČ=-0.12 s.d.; 95%CI: -0.21 to -0.02) and diastolic blood pressure (ÎČ=-0.11 s.d.; 95%CI: -0.22 to -0.01), and higher VFT/SAFT ratio (ÎČ=0.15 s.d.; 95%CI: 0.06 to 0.24), in comparison with non-stunted individuals. In addition, early stunting was associated with lower fat free mass in both men (ÎČ=-0.39 s.d.; 95%CI: -0.47 to -0.31) and women (ÎČ=-0.37 s.d.; 95%CI: -0.46 to -0.29) after adjustment for potential confounders. Our results suggest that early stunting has implications on attained height, body composition and blood pressure. The apparent tendency of stunted individuals to accumulate less fat-free mass and subcutaneous fat might predispose them towards increased metabolic risks in later life.The last phase of the 1982 Pelotas (Brazil) birth cohort study was supported by the Wellcome Trust and the Fundação de Aparo Ă  Pesquisa do Estado do Rio Grande do Sul; Brazil (Edital 04/2012 – PQG; Processo 12/2185-9). Earlier phases were funded by the International Development Research Centre (Canada), the WHO (Department of Child and Adolescent Health and Development and Human Reproduction Programme) to BLH, the Overseas Development Administration (currently the Department for International Development, United Kingdom), the European Union, the United Nations Development Fund for Women, the National Program for Centres of Excellence, the Pastorate of the Child (Brazil), the National Council for Scientific and Technological Development (CNPq; Brazil), and the Ministry of Health (Brazil). GVAF was supported by the Brazilian Coordination of Improvement of Higher Education Personnel (scholarship process BEX 5077/13-3). EDLR and KKO are supported by the Medical Research Council [Unit Programme number MC_UU_12015/2]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Predicting pharmaceutical inkjet printing outcomes using machine learning

    Get PDF
    Inkjet printing has been extensively explored in recent years to produce personalised medicines due to its low cost and versatility. Pharmaceutical applications have ranged from orodispersible films to complex polydrug implants. However, the multi-factorial nature of the inkjet printing process makes formulation (e.g., composition, surface tension, and viscosity) and printing parameter optimization (e.g., nozzle diameter, peak voltage, and drop spacing) an empirical and time-consuming endeavour. Instead, given the wealth of publicly available data on pharmaceutical inkjet printing, there is potential for a predictive model for inkjet printing outcomes to be developed. In this study, machine learning (ML) models (random forest, multilayer perceptron, and support vector machine) to predict printability and drug dose were developed using a dataset of 687 formulations, consolidated from in-house and literature-mined data on inkjet-printed formulations. The optimized ML models predicted the printability of formulations with an accuracy of 97.22%, and predicted the quality of the prints with an accuracy of 97.14%. This study demonstrates that ML models can feasibly provide predictive insights to inkjet printing outcomes prior to formulation preparation, affording resource- and time-savings

    A case study on decentralized manufacturing of 3D printed medicines

    Get PDF
    Pharmaceutical 3D printing (3DP) is one of the emerging enabling technologies of personalised medicines as it affords the ability to fabricate highly versatile dosage forms. In the past 2 years, national medicines regulatory authorities have held consultations with external stakeholders to adapt regulatory frameworks to embrace point-of-care manufacturing. The proposed concept of decentralized manufacturing (DM) involves the provision of feedstock intermediates (pharma-inks) prepared by pharmaceutical companies to DM sites for manufacturing into the final medicine. In this study, we examine the feasibility of this model, with respect to both manufacturing and quality control. Efavirenz-loaded granulates (0–35%w/w) were produced by a manufacturing partner and shipped to a 3DP site in a different country. Direct powder extrusion (DPE) 3DP was subsequently used to prepare printlets (3D printed tablets), with mass ranging 266–371 mg. All printlets released more than 80% drug load within the first 60 min of the in vitro drug release test. An in-line near-infrared spectroscopy system was used as a process analytical technology (PAT) to quantify the printlets' drug load. Calibration models were developed using partial least squares regression, which showed excellent linearity (R2 = 0.9833) and accuracy (RMSE = 1.0662). Overall, this work is the first to report the use of an in-line NIR system to perform real-time analysis of printlets prepared using pharma-inks produced by a pharmaceutical company. By demonstrating the feasibility of the proposed distribution model through this proof-of-concept study, this work paves the way for investigation of further PAT tools for quality control in 3DP point-of-care manufacturing

    Simultaneous fabrication of multiple tablets within seconds using tomographic volumetric 3D printing

    Get PDF
    3D printing is driving a shift in patient care away from a generalised model and towards personalised treatments. To complement fast-paced clinical environments, 3D printing technologies must provide sufficiently high throughputs for them to be feasibly implemented. Volumetric printing is an emerging 3D printing technology that affords such speeds, being capable of producing entire objects within seconds. In this study, for the first time, rotatory volumetric printing was used to simultaneously produce two torus- or cylinder-shaped paracetamol-loaded Printlets (3D printed tablets). Six resin formulations comprising paracetamol as the model drug, poly(ethylene glycol) diacrylate (PEGDA) 575 or 700 as photoreactive monomers, water and PEG 300 as non-reactive diluents, and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as the photoinitiator were investigated. Two printlets were successfully printed in 12 to 32 s and exhibited sustained drug release profiles. These results support the use of rotary volumetric printing for efficient and effective manufacturing of various personalised medicines at the same time. With the speed and precision it affords, rotatory volumetric printing has the potential to become one of the most promising alternative manufacturing technologies in the pharmaceutical industry
    • 

    corecore