341 research outputs found

    Ecological commonalities among pelagic fishes: comparison of freshwater ciscoes and marine herring and sprat

    Get PDF
    Systematic comparisons of the ecology between functionally similar fish species from freshwater and marine aquatic systems are surprisingly rare. Here, we discuss commonalities and differences in evolutionary history, population genetics, reproduction and life history, ecological interactions, behavioural ecology and physiological ecology of temperate and Arctic freshwater coregonids (vendace and ciscoes, Coregonus spp.) and marine clupeids (herring, Clupea harengus, and sprat, Sprattus sprattus). We further elucidate potential effects of climate warming on these groups of fish based on the ecological features of coregonids and clupeids documented in the previous parts of the review. These freshwater and marine fishes share a surprisingly high number of similarities. Both groups are relatively short-lived, pelagic planktivorous fishes. The genetic differentiation of local populations is weak and seems to be in part correlated to an astonishing variability of spawning times. The discrete thermal window of each species influences habitat use, diel vertical migrations and supposedly also life history variations. Complex life cycles and preference for cool or cold water make all species vulnerable to the effects of global warming. It is suggested that future research on the functional interdependence between spawning time, life history characteristics, thermal windows and genetic differentiation may profit from a systematic comparison of the patterns found in either coregonids or clupeids

    Climate change and freshwater zooplankton: what does it boil down to?

    Get PDF
    Recently, major advances in the climate–zooplankton interface have been made some of which appeared to receive much attention in a broader audience of ecologists as well. In contrast to the marine realm, however, we still lack a more holistic summary of recent knowledge in freshwater. We discuss climate change-related variation in physical and biological attributes of lakes and running waters, high-order ecological functions, and subsequent alteration in zooplankton abundance, phenology, distribution, body size, community structure, life history parameters, and behavior by focusing on community level responses. The adequacy of large-scale climatic indices in ecology has received considerable support and provided a framework for the interpretation of community and species level responses in freshwater zooplankton. Modeling perspectives deserve particular consideration, since this promising stream of ecology is of particular applicability in climate change research owing to the inherently predictive nature of this field. In the future, ecologists should expand their research on species beyond daphnids, should address questions as to how different intrinsic and extrinsic drivers interact, should move beyond correlative approaches toward more mechanistic explanations, and last but not least, should facilitate transfer of biological data both across space and time

    Behavioural Thermoregulatory Tactics in Lacustrine Brook Charr, Salvelinus fontinalis

    Get PDF
    The need to vary body temperature to optimize physiological processes can lead to thermoregulatory behaviours, particularly in ectotherms. Despite some evidence of within-population phenotypic variation in thermal behaviour, the occurrence of alternative tactics of this behaviour is rarely explicitly considered when studying natural populations. The main objective of this study was to determine whether different thermal tactics exist among individuals of the same population. We studied the behavioural thermoregulation of 33 adult brook charr in a stratified lake using thermo-sensitive radio transmitters that measured hourly individual temperature over one month. The observed behavioural thermoregulatory patterns were consistent between years and suggest the existence of four tactics: two “warm” tactics with both crepuscular and finer periodicities, with or without a diel periodicity, and two “cool” tactics, with or without a diel periodicity. Telemetry data support the above findings by showing that the different tactics are associated with different patterns of diel horizontal movements. Taken together, our results show a clear spatio-temporal segregation of individuals displaying different tactics, suggesting a reduction of niche overlap. To our knowledge, this is the first study showing the presence of behavioural thermoregulatory tactics in a vertebrate

    Fate of Allochthonous Dissolved Organic Carbon in Lakes: A Quantitative Approach

    Get PDF
    Inputs of dissolved organic carbon (DOC) to lakes derived from the surrounding landscape can be stored, mineralized or passed to downstream ecosystems. The balance among these OC fates depends on a suite of physical, chemical, and biological processes within the lake, as well as the degree of recalcintrance of the allochthonous DOC load. The relative importance of these processes has not been well quantified due to the complex nature of lakes, as well as challenges in scaling DOC degradation experiments under controlled conditions to the whole lake scale. We used a coupled hydrodynamic-water quality model to simulate broad ranges in lake area and DOC, two characteristics important to processing allochthonous carbon through their influences on lake temperature, mixing depth and hydrology. We calibrated the model to four lakes from the North Temperate Lakes Long Term Ecological Research site, and simulated an additional 12 ‘hypothetical’ lakes to fill the gradients in lake size and DOC concentration. For each lake, we tested several mineralization rates (range: 0.001 d−1 to 0.010 d−1) representative of the range found in the literature. We found that mineralization rates at the ecosystem scale were roughly half the values from laboratory experiments, due to relatively cool water temperatures and other lake-specific factors that influence water temperature and hydrologic residence time. Results from simulations indicated that the fate of allochthonous DOC was controlled primarily by the mineralization rate and the hydrologic residence time. Lakes with residence times <1 year exported approximately 60% of the DOC, whereas lakes with residence times >6 years mineralized approximately 60% of the DOC. DOC fate in lakes can be determined with a few relatively easily measured factors, such as lake morphometry, residence time, and temperature, assuming we know the recalcitrance of the DOC

    GRADE Guidelines 30: the GRADE approach to assessing the certainty of modeled evidence—An overview in the context of health decision-making

    Get PDF
    Objectives: The objective of the study is to present the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) conceptual approach to the assessment of certainty of evidence from modeling studies (i.e., certainty associated with model outputs). / Study Design and Setting: Expert consultations and an international multidisciplinary workshop informed development of a conceptual approach to assessing the certainty of evidence from models within the context of systematic reviews, health technology assessments, and health care decisions. The discussions also clarified selected concepts and terminology used in the GRADE approach and by the modeling community. Feedback from experts in a broad range of modeling and health care disciplines addressed the content validity of the approach. / Results: Workshop participants agreed that the domains determining the certainty of evidence previously identified in the GRADE approach (risk of bias, indirectness, inconsistency, imprecision, reporting bias, magnitude of an effect, dose–response relation, and the direction of residual confounding) also apply when assessing the certainty of evidence from models. The assessment depends on the nature of model inputs and the model itself and on whether one is evaluating evidence from a single model or multiple models. We propose a framework for selecting the best available evidence from models: 1) developing de novo, a model specific to the situation of interest, 2) identifying an existing model, the outputs of which provide the highest certainty evidence for the situation of interest, either “off-the-shelf” or after adaptation, and 3) using outputs from multiple models. We also present a summary of preferred terminology to facilitate communication among modeling and health care disciplines. / Conclusion: This conceptual GRADE approach provides a framework for using evidence from models in health decision-making and the assessment of certainty of evidence from a model or models. The GRADE Working Group and the modeling community are currently developing the detailed methods and related guidance for assessing specific domains determining the certainty of evidence from models across health care–related disciplines (e.g., therapeutic decision-making, toxicology, environmental health, and health economics)

    Comparative Influence of Ocean Conditions on Yellowfin and Atlantic Bluefin Tuna Catch from Longlines in the Gulf of Mexico

    Get PDF
    Directed fishing effort for Atlantic bluefin tuna in the Gulf of Mexico (GOM), their primary spawning grounds in the western Atlantic, has been prohibited since the 1980s due to a precipitous decline of the spawning stock biomass. However, pelagic longlines targeted at other species, primarily yellowfin tuna and swordfish, continue to catch Atlantic bluefin tuna in the GOM as bycatch. Spatial and temporal management measures minimizing bluefin tuna bycatch in the GOM will likely become important in rebuilding the western Atlantic bluefin stock. In order to help inform management policy and understand the relative distribution of target and bycatch species in the GOM, we compared the spatiotemporal variability and environmental influences on the catch per unit effort (CPUE) of yellowfin (target) and bluefin tuna (bycatch). Catch and effort data from pelagic longline fisheries observers (1993–2005) and scientific tagging cruises (1998–2002) were coupled with environmental and biological data. Negative binomial models were used to fit the data for both species and Akaike's Information Criterion (corrected for small sample size) was used to determine the best model. Our results indicate that bluefin CPUE had higher spatiotemporal variability as compared to yellowfin CPUE. Bluefin CPUE increased substantially during the breeding months (March-June) and peaked in April and May, while yellowfin CPUE remained relatively high throughout the year. In addition, bluefin CPUE was significantly higher in areas with negative sea surface height anomalies and cooler sea surface temperatures, which are characteristic of mesoscale cyclonic eddies. In contrast, yellowfin CPUE was less sensitive to environmental variability. These differences in seasonal variability and sensitivity to environmental influences suggest that bluefin tuna bycatch in the GOM can be reduced substantially by managing the spatial and temporal distribution of the pelagic longline effort without substantially impacting yellowfin tuna catches

    A Lipid Receptor Sorts Polyomavirus from the Endolysosome to the Endoplasmic Reticulum to Cause Infection

    Get PDF
    The mechanisms by which receptors guide intracellular virus transport are poorly characterized. The murine polyomavirus (Py) binds to the lipid receptor ganglioside GD1a and traffics to the endoplasmic reticulum (ER) where it enters the cytosol and then the nucleus to initiate infection. How Py reaches the ER is unclear. We show that Py is transported initially to the endolysosome where the low pH imparts a conformational change that enhances its subsequent ER-to-cytosol membrane penetration. GD1a stimulates not viral binding or entry, but rather sorting of Py from late endosomes and/or lysosomes to the ER, suggesting that GD1a binding is responsible for ER targeting. Consistent with this, an artificial particle coated with a GD1a antibody is transported to the ER. Our results provide a rationale for transport of Py through the endolysosome, demonstrate a novel endolysosome-to-ER transport pathway that is regulated by a lipid, and implicate ganglioside binding as a general ER targeting mechanism

    Effects of climate and land-use changes on fish catches across lakes at a global scale

    Get PDF
    Globally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970–2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security
    corecore