50 research outputs found

    Simulating Microdosimetry in a Virtual Hepatic Lobule

    Get PDF
    The liver plays a key role in removing harmful chemicals from the body and is therefore often the first tissue to suffer potentially adverse consequences. To protect public health it is necessary to quantitatively estimate the risk of long-term low dose exposure to environmental pollutants. Animal testing is the primary tool for extrapolating human risk but it is fraught with uncertainty, necessitating novel alternative approaches. Our goal is to integrate in vitro liver experiments with agent-based cellular models to simulate a spatially extended hepatic lobule. Here we describe a graphical model of the sinusoidal network that efficiently simulates portal to centrilobular mass transfer in the hepatic lobule. We analyzed the effects of vascular topology and metabolism on the cell-level distribution following oral exposure to chemicals. The spatial distribution of metabolically inactive chemicals was similar across different vascular networks and a baseline well-mixed compartment. When chemicals were rapidly metabolized, concentration heterogeneity of the parent compound increased across the vascular network. As a result, our spatially extended lobule generated greater variability in dose-dependent cellular responses, in this case apoptosis, than were observed in the classical well-mixed liver or in a parallel tubes model. The mass-balanced graphical approach to modeling the hepatic lobule is computationally efficient for simulating long-term exposure, modular for incorporating complex cellular interactions, and flexible for dealing with evolving tissues

    Communication, development, and social change in Spain: A field between institutionalization and implosion

    Get PDF
    This paper renders an account of the rapid institutionalization of the academic field of Communication for Development and Social Change (CDCS) in Spain in recent years following a period of neglect and marginalization. The ongoing expansion of the field of CDSC in the Spanish context is understood as a process of implosion, i.e. a collapse inwards, which results from the inconsistencies and weaknesses of fast and late institutionalization. The methodological approach for this inquiry is a documental review of both academic literature and research and institutional reports produced in Spain between 1980 and 2010. Based on this review, the paper contrasts the trajectory of the field in Spain with the debates at the international level, establishing relevant continuities and differences.This article is part of the Research Project (Ministry of Economy and Competitiveness, Spain) CSO2014-52005-R titled ‘Evaluation and Monitoring of Communication for Development and Social Change in Spain: design of indicators to measure its social impact’ (2015–2017)17 página

    Validation of Skeletal Muscle cis-Regulatory Module Predictions Reveals Nucleotide Composition Bias in Functional Enhancers

    Get PDF
    We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions

    Liver architecture, cell function, and disease.

    Get PDF
    The liver is an organ consisting of the largest reticulo-endothelial cell network in the body and playing an important role in host defense against invading microorganisms. The organ is comprised of parenchymal cells and many different types of non-parenchymal cells, all of which play a significant role. Even biliary epithelial cells are not only the target in autoimmune liver diseases but also have central role in orchestrating several immune cells involved in both innate and acquired immunity. Tissue damage caused by various agents results in inflammation, necrosis, fibrosis, and, eventually, distortion of normal hepatic architecture, cirrhosis, and functional deterioration
    corecore