42 research outputs found

    Functional and neurometabolic asymmetry in SHR and WKY rats following vasoactive treatments

    Get PDF
    A lateralized distribution of neuropeptidase activities in the frontal cortex of normotensive and hypertensive rats has been described depending on the use of some vasoactive drugs and linked to certain mood disorders. Asymmetrical neuroperipheral connections involving neuropeptidases from the left or right hemisphere and aminopeptidases from the heart or plasma have been suggested to play a role in this asymmetry. We hypothesize that such asymmetries could be extended to the connection between the brain and physiologic parameters and metabolic factors from plasma and urine. To assess this hypothesis, we analyzed the possible correlation between neuropeptidases from the left and right frontal cortex with peripheral parameters in normotensive (Wistar Kyoto [WKY]) rats and hypertensive rats (spontaneously hypertensive rats [SHR]) untreated or treated with vasoactive drugs such as captopril, propranolol and L-nitro-arginine methyl ester. Neuropeptidase activities from the frontal cortex were analyzed fluorometrically using arylamide derivatives as substrates. Physiological parameters and metabolic factors from plasma and urine were determined using routine laboratory techniques. Vasoactive drug treatments differentially modified the asymmetrical neuroperipheral pattern by changing the predominance of the correlations between peripheral parameters and central neuropeptidase activities of the left and right frontal cortex. The response pattern also differed between SHR and WKY rats. These results support an asymmetric integrative function of the organism and suggest the possibility of a different neurometabolic response coupled to particular mood disorders, depending on the selected vasoactive drug.This work was supported by the Ministry of Science and Innovation through project no. SAF 2008 04685 C02 01

    Benefit and accuracy of intraoperative 3D-imaging after pedicle screw placement: a prospective study in stabilizing thoracolumbar fractures

    No full text
    Internal fixation is the established dorsal standard procedure for the treatment of thoracolumbar fractures. The main problem of the procedure is the false positioning of the pedicle screws. The exact determination of pedicle screws has up to now only been possible through postoperative computed tomography. This study was intended to clarify the diagnostic value of intraoperative 3D scans after pedicle screw implantation in thoracolumbar spine surgery. The direct intraoperative consequences of the 3D scans are reported and the results of the 3D scans are compared with the postoperative computed tomography images. Intraoperative 3D scans were prospectively carried out from June 2006 to October 2008 on 95 patients with fractures of the thoracolumbar spine that have been treated with internal fixation. Screws positions were categorised intraoperatively, screws in relevant malposition were repositioned immediately. A computed tomography of the involved spinal section was carried out postoperatively for all patients. The positions of the pedicle screws were determined and compared in the axial reconstructions of both procedures. Four hundred and fourteen pedicles with enclosed screws were evaluated by the 3D scans. The time needed for carrying out the 3D scan amounts to an average of 8.2 min. Eleven screws (2.7%) in ten patients were primarily intraoperatively repositioned on the basis of the 3D scan evaluation. Two of 95 patients had to have false positions of the screws revised secondarily following evaluation of the computed tomographies. The secondary postoperative revision rate of the patients amounts to 2.1%. In relation to the number of screws, this is a revision rate of 0.5%. The postoperative computed tomographies showed 323 pedicles without cortical penetration by the screws (78.0%). Ninety-one screws penetrated the pedicle wall (22%). It was possible to postoperatively compare the position classifications of 406 pedicle screws. The CT showed 378 correct screw positions, while 28 screws were positioned falsely. On the basis of the 3D scans, 376 of 378 correct positions were correctly assessed. Twenty-one of 28 false positions could be correctly classified. The sensitivity of all 3D scans reached 91.3% and the specificity 98.2%. The position of 97.8% of the pedicle screws was correctly recognised by the intraoperative 3D scan. Nine screws were classified falsely (2.2%). The comparison of the classification results showed significantly higher error findings by the 3D scan in the spinal section T1–10 (P = 0.014). The image quality of the 3D scan correlates significantly with the width of the scanned pedicle, with the body mass index, the scanned spinal section and the extent of the fixation assembly. 3D scans showed a high accuracy in predicting pedicle screw position. Primary false placement of screws and primary neurovascular damage cannot be avoided. But intraoperative evaluation of the 3D scans resulted in a primary revision rate of 2.7% of the pedicle screws and we could lower the secondary revision rate to 0.5%
    corecore