20 research outputs found

    A theoretical model of inflammation- and mechanotransduction- driven asthmatic airway remodelling

    Get PDF
    Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and procontractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms

    Preconditioning via Angiotensin Type 2 Receptor Activation Improves Therapeutic Efficacy of Bone Marrow Mononuclear Cells for Cardiac Repair

    Get PDF
    BACKGROUND: The therapeutic efficiency of bone marrow mononuclear cells (BMMNCs) autologous transplantation for myocardial infarction (MI) remains low. Here we developed a novel strategy to improve cardiac repair by preconditioning BMMNCs via angiotensin II type 2 receptor (AT2R) stimulation. METHODS AND RESULTS: Acute MI in rats led to a significant increase of AT2R expression in BMMNCs. Preconditioning of BMMNCs via AT2R stimulation directly with an AT2R agonist CGP42112A or indirectly with angiotensin II plus AT1R antagonist valsartan led to ERK activation and increased eNOS expression as well as subsequent nitric oxide generation, ultimately improved cardiomyocyte protection in vitro as measured by co-culture approach. Intramyocardial transplantation of BMMNCs preconditioned via AT2R stimulation improved survival of transplanted cells in ischemic region of heart tissue and reduced cardiomyocyte apoptosis and inflammation at 3 days after MI. At 4 weeks after transplantation, compared to DMEM and non-preconditioned BMMNCs group, AT2R stimulated BMMNCs group showed enhanced vessel density in peri-infarct region and attenuated infarct size, leading to global heart function improvement. CONCLUSIONS: Preconditioning of BMMNCs via AT2R stimulation exerts protective effect against MI. Stimulation of AT2R in BMMNCs may provide a new strategy to improving therapeutic efficiency of stem cells for post MI cardiac repair
    corecore