234 research outputs found
The impact of adoption of conservation agriculture on smallholder farmers’ food security in semi-arid zones of southern Africa
BACKGROUND
In southern Africa, conservation agriculture (CA) has received a lot of research and promotional support from various organizations in the past decades. Conservation agriculture is largely promoted as one of the few win–win technologies affordable to farmers, in the sense that potentially it improves farmers’ yields (in the long term) at the same time conserving the environment. This is because conservation agriculture reduces nitrogen loss in the soil, promotes water and soil conservation and improves agronomic use efficiency of applied nutrients. However, some concerns have been raised over the feasibility of conservation agriculture on smallholder farms given constraints imposed by the biophysical and institutional realities under which smallholder farmers operate. The main aim of this study is to answer the question whether conservation agriculture is resulting in tangible livelihood outcomes to smallholder farmers. The counterfactual outcome approach was used to estimate ex post impact of conservation agriculture adoption on one of the key livelihood outcomes—food security.
RESULTS
The study that utilized a data set covering 1623 households in Zimbabwe, Malawi and Mozambique found no significant impact of conservation agriculture adoption on Food Consumption Score of farmers in Zimbabwe and Malawi. Possible reasons for the insignificant of CA impact on food security in Zimbabwe and Malawi could include the small land areas currently devoted to CA, and the failure to implement the full complement of practices necessary to set off the biophysical process that are expected to drive yield increases. In Mozambique, conservation agriculture significantly improved the Food Consumption Score for farmers exposed to the technology. A possible reason for effectiveness of CA in Mozambique could be due to the fact that often CA is being promoted together with other better cropping management practices such as timely weeding and improved seed varieties, which are poorly practiced by the generality of farmers in a country just emerging from a war period.
CONCLUSION
This paper provides one of the few ex post assessments of the impact of conservation agriculture adoption on household livelihood outcomes—food security. Given the mixed findings, the study suggests that conservation agriculture farmers in the three countries need to be supported to adopt a value chain approach to conservation agriculture. This entails the introduction of commercial or high-value crops in the conservation agriculture programmes, value addition on farmers produce, access to the necessary support services such as markets for seed, fertilizer, herbicides and equipment as well as reliable extension. We believe that under such circumstances conservation agriculture can effectively reduce food insecurity and poverty in the medium to long term
Robust Antigen Specific Th17 T Cell Response to Group A Streptococcus Is Dependent on IL-6 and Intranasal Route of Infection
Group A streptococcus (GAS, Streptococcus pyogenes) is the cause of a variety of clinical conditions, ranging from pharyngitis to autoimmune disease. Peptide-major histocompatibility complex class II (pMHCII) tetramers have recently emerged as a highly sensitive means to quantify pMHCII-specific CD4+ helper T cells and evaluate their contribution to both protective immunity and autoimmune complications induced by specific bacterial pathogens. In lieu of identifying an immunodominant peptide expressed by GAS, a surrogate peptide (2W) was fused to the highly expressed M1 protein on the surface of GAS to allow in-depth analysis of the CD4+ helper T cell response in C57BL/6 mice that express the I-Ab MHCII molecule. Following intranasal inoculation with GAS-2W, antigen-experienced 2W:I-Ab-specific CD4+ T cells were identified in the nasal-associated lymphoid tissue (NALT) that produced IL-17A or IL-17A and IFN-γ if infection was recurrent. The dominant Th17 response was also dependent on the intranasal route of inoculation; intravenous or subcutaneous inoculations produced primarily IFN-γ+ 2W:I-Ab+ CD4+ T cells. The acquisition of IL-17A production by 2W:I-Ab-specific T cells and the capacity of mice to survive infection depended on the innate cytokine IL-6. IL-6-deficient mice that survived infection became long-term carriers despite the presence of abundant IFN-γ-producing 2W:I-Ab-specific CD4+ T cells. Our results suggest that an imbalance between IL-17- and IFN-γ-producing CD4+ T cells could contribute to GAS carriage in humans
Cold and heterogeneous T cell repertoire is associated with copy number aberrations and loss of immune genes in small-cell lung cancer
Small-cell lung cancer (SCLC) is speculated to harbor complex genomic intratumor heterogeneity (ITH) associated with high recurrence rate and suboptimal response to immunotherapy. Here, using multi-region whole exome/T cell receptor (TCR) sequencing as well as immunohistochemistry, we reveal a rather homogeneous mutational landscape but extremely cold and heterogeneous TCR repertoire in limited-stage SCLC tumors (LS-SCLCs). Compared to localized non-small cell lung cancers, LS-SCLCs have similar predicted neoantigen burden and genomic ITH, but significantly colder and more heterogeneous TCR repertoire associated with higher chromosomal copy number aberration (CNA) burden. Furthermore, copy number loss of IFN-γ pathway genes is frequently observed and positively correlates with CNA burden. Higher mutational burden, higher T cell infiltration and positive PD-L1 expression are associated with longer overall survival (OS), while higher CNA burden is associated with shorter OS in patients with LS-SCLC
Evaluation of transduction efficiency in macrophage colony-stimulating factor differentiated human macrophages using HIV-1 based lentiviral vectors
<p>Abstract</p> <p>Background</p> <p>Monocyte-derived macrophages contribute to atherosclerotic plaque formation. Therefore, manipulating macrophage function could have significant therapeutic value. The objective of this study was to determine transduction efficiency of two HIV-based lentiviral vector configurations as delivery systems for the transduction of primary human blood monocyte-derived macrophages.</p> <p>Results</p> <p>Human blood monocytes were transduced using two VSV-G pseudotyped HIV-1 based lentiviral vectors containing EGFP expression driven by either native HIV-LTR (VRX494) or EF1α promoters (VRX1090). Lentiviral vectors were added to cultured macrophages at different times and multiplicities of infection (MOI). Transduction efficiency was assessed using fluorescence microscopy and flow cytometry. Macrophages transduced between 2 and 120 hours after culturing showed the highest transduction efficiency at 2-hours transduction time. Subsequently, cells were transduced 2 hours after culturing at various vector concentrations (MOIs of 5, 10, 25 and 50) to determine the amount of lentiviral vector particles required to maximally transduce human monocyte-derived macrophages. On day 7, all transduced cultures showed EGFP-positive cells by microscopy. Flow cytometric analysis showed with all MOIs a peak shift corresponding to the presence of EGFP-positive cells. For VRX494, transduction efficiency was maximal at an MOI of 25 to 50 and ranged between 58 and 67%. For VRX1090, transduction efficiency was maximal at an MOI of 10 and ranged between 80 and 90%. Thus, transductions performed with VRX1090 showed a higher number of EGFP-positive cells than VRX494.</p> <p>Conclusions</p> <p>This report shows that VSV-G pseudotyped HIV-based lentiviral vectors can efficiently transduce human blood monocyte-derived macrophages early during differentiation using low particle numbers that do not interfere with differentiation of monocytes into macrophages.</p
Multiomics profiling of primary lung cancers and distant metastases reveals immunosuppression as a common characteristic of tumor cells with metastatic plasticity
BACKGROUND: Metastasis is the primary cause of cancer mortality accounting for 90% of cancer deaths. Our understanding of the molecular mechanisms driving metastasis is rudimentary. RESULTS: We perform whole exome sequencing (WES), RNA sequencing, methylation microarray, and immunohistochemistry (IHC) on 8 pairs of non-small cell lung cancer (NSCLC) primary tumors and matched distant metastases. Furthermore, we analyze published WES data from 35 primary NSCLC and metastasis pairs, and transcriptomic data from 4 autopsy cases with metastatic NSCLC and one metastatic lung cancer mouse model. The majority of somatic mutations are shared between primary tumors and paired distant metastases although mutational signatures suggest different mutagenesis processes in play before and after metastatic spread. Subclonal analysis reveals evidence of monoclonal seeding in 41 of 42 patients. Pathway analysis of transcriptomic data reveals that downregulated pathways in metastases are mainly immune-related. Further deconvolution analysis reveals significantly lower infiltration of various immune cell types in metastases with the exception of CD4+ T cells and M2 macrophages. These results are in line with lower densities of immune cells and higher CD4/CD8 ratios in metastases shown by IHC. Analysis of transcriptomic data from autopsy cases and animal models confirms that immunosuppression is also present in extracranial metastases. Significantly higher somatic copy number aberration and allelic imbalance burdens are identified in metastases. CONCLUSIONS: Metastasis is a molecularly late event, and immunosuppression driven by different molecular events, including somatic copy number aberration, may be a common characteristic of tumors with metastatic plasticity
Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer
Tumor-associated dendritic cells are defective in their ability to cross-present antigens, and they accumulate lipid bodies. Here the authors show that this defect is due to an impaired trafficking of peptide-MHC class I caused by the interaction of electrophilic lipids with chaperone heat shock protein 70
Mosquitoes LTR Retrotransposons: A Deeper View into the Genomic Sequence of Culex quinquefasciatus
A set of 67 novel LTR-retrotransposon has been identified by in silico analyses of the Culex quinquefasciatus genome using the LTR_STRUC program. The phylogenetic analysis shows that 29 novel and putatively functional LTR-retrotransposons detected belong to the Ty3/gypsy group. Our results demonstrate that, by considering only families containing potentially autonomous LTR-retrotransposons, they account for about 1% of the genome of C. quinquefasciatus. In previous studies it has been estimated that 29% of the genome of C. quinquefasciatus is occupied by mobile genetic elements
Direction-Selective Circuitry in Rat Retina Develops Independently of GABAergic, Cholinergic and Action Potential Activity
The ON-OFF direction selective ganglion cells (DSGCs) in the mammalian retina code image motion by responding much more strongly to movement in one direction. They do so by receiving inhibitory inputs selectively from a particular sector of processes of the overlapping starburst amacrine cells, a type of retinal interneuron. The mechanisms of establishment and regulation of this selective connection are unknown. Here, we report that in the rat retina, the morphology, physiology of the ON-OFF DSGCs and the circuitry for coding motion directions develop normally with pharmacological blockade of GABAergic, cholinergic activity and/or action potentials for over two weeks from birth. With recent results demonstrating light independent formation of the retinal DS circuitry, our results strongly suggest the formation of the circuitry, i.e., the connections between the second and third order neurons in the visual system, can be genetically programmed, although emergence of direction selectivity in the visual cortex appears to require visual experience
A Host Defense Mechanism Involving CFTR-Mediated Bicarbonate Secretion in Bacterial Prostatitis
BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(-) and HCO(3)(-), in mediating prostate HCO(3)(-) secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli)-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II), along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3)(-) content (>50 mM), rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3)(-) on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3)(-) secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3)(-) secretion may be up-regulated in prostatitis as a host defense mechanism
Chronic disease prevalence and care among the elderly in urban and rural Beijing, China - a 10/66 Dementia Research Group cross-sectional survey
<p>Abstract</p> <p>Background</p> <p>Demographic ageing is occurring at an unprecedented rate in China. Chronic diseases and their disabling consequences will become much more common. Public policy has a strong urban bias, and older people living in rural areas may be especially vulnerable due to limited access to good quality healthcare, and low pension coverage. We aim to compare the sociodemographic and health characteristics, health service utilization, needs for care and informal care arrangements of representative samples of older people in two Beijing communities, urban Xicheng and rural Daxing.</p> <p>Methods</p> <p>A one-phase cross-sectional survey of all those aged 65 years and over was conducted in urban and rural catchment areas in Beijing, China. Assessments included questionnaires, a clinical interview, physical examination, and an informant interview. Prevalence of chronic diseases, self-reported impairments and risk behaviours was calculated adjusting for household clustering. Poisson working models were used to estimate the independent effect of rural versus urban residence, and to explore the predictors of health services utilization.</p> <p>Results</p> <p>We interviewed 1002 participants in rural Daxing, and 1160 in urban Xicheng. Those in Daxing were more likely to be younger, widowed, less educated, not receiving a pension, and reliant on family transfers. Chronic diseases were more common in Xicheng, when based on self-report rather than clinical assessment. Risk exposures were more common in Daxing. Rural older people were much less likely to access health services, controlling for age and health. Community health services were ineffective, particularly in Daxing, where fewer than 3% of those with hypertension were adequately controlled. In Daxing, care was provided by family, who had often given up work to do so. In Xicheng, 45% of those needing care were supported by paid caregivers. Caregiver strain was higher in Xicheng. Dementia was strongly associated with care needs and caregiver strain, but not with medical helpseeking.</p> <p>Conclusion</p> <p>Apparent better health in Daxing might be explained by under-diagnosis, under-reporting or selective mortality. Far-reaching structural reforms may be needed to improve access and strengthen rural healthcare. The impact of social and economic change is already apparent in Xicheng, with important implications for future long-term care.</p
- …