2,372 research outputs found

    Antigenic Complementarity in the Origins of Autoimmunity: A General Theory Illustrated With a Case Study of Idiopathic Thrombocytopenia Purpura

    Get PDF
    We describe a novel, testable theory of autoimmunity, outline novel predictions made by the theory, and illustrate its application to unravelling the possible causes of idiopathic thrombocytopenia purpura (ITP). Pairs of stereochemically complementary antigens induce complementary immune responses (antibody or T-cell) that create loss of regulation and civil war within the immune system itself. Antibodies attack antibodies creating circulating immune complexes; T-cells attack T-cells creating perivascular cuffing. This immunological civil war abrogates the self-nonself distinction. If at least one of the complementary antigens mimics a self antigen, then this unregulated immune response will target host tissues as well. Data demonstrating that complementary antigens are found in some animal models of autoimmunity and may be present in various human diseases, especially ITP, are reviewed. Specific mechanisms for preventing autoimmunity or suppressing existing autoimmunity are derived from the theory, and critical tests proposed. Finally, we argue that Koch's postulates are inadequate for establishing disease causation for multiple-antigen diseases and discuss the possibility that current research has failed to elucidate the causes of human autoimmune diseases because we are using the wrong criteria

    Animal modelling for inherited central vision loss.

    Get PDF
    Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans

    Education and transfer of water competencies: An ecological dynamics approach

    Get PDF
    © The Author(s) 2020. To cope in various aquatic environments (i.e. swimming pools, lakes, rivers, oceans), learners require a wide repertoire of self-regulatory behaviours such as awareness of obstacles and water properties, floating and moving from point to point with different strokes, decision making, emotional control and breathing efficiently. By experiencing different learning situations in stable indoor pool environments, it is assumed that children strengthen aquatic competencies that should be transferable to functioning in open water environments, where prevalence of drowning is high. However, this fundamental assumption may be misleading. Here, we propose the application of a clear, related methodology and theoretical framework that could be useful to help physical education curriculum specialists (re)shape and (re)design appropriate aquatic learning situations to facilitate better transfer of learning. We discuss the need for more representativeness in a learning environment, proposing how the many different task and environmental constraints on aquatic actions may bound the emergence of functional, self-regulatory behaviours in learners. Ideas in ecological dynamics suggest that physical educators should design learning environments that offer a rich landscape of opportunities for action for learners. As illustration, three practice interventions are described for developing functional and transferrable skills in indoor aquatic environments. It is important that aquatic educators focus not just upon ‘learning to swim’, but particularly on relevant transferable skills and self-regulatory behaviours deemed necessary for functioning in dynamic, outdoor aquatic environments

    Education and transfer of water competencies: An ecological dynamics approach

    Get PDF
    © The Author(s) 2020. To cope in various aquatic environments (i.e. swimming pools, lakes, rivers, oceans), learners require a wide repertoire of self-regulatory behaviours such as awareness of obstacles and water properties, floating and moving from point to point with different strokes, decision making, emotional control and breathing efficiently. By experiencing different learning situations in stable indoor pool environments, it is assumed that children strengthen aquatic competencies that should be transferable to functioning in open water environments, where prevalence of drowning is high. However, this fundamental assumption may be misleading. Here, we propose the application of a clear, related methodology and theoretical framework that could be useful to help physical education curriculum specialists (re)shape and (re)design appropriate aquatic learning situations to facilitate better transfer of learning. We discuss the need for more representativeness in a learning environment, proposing how the many different task and environmental constraints on aquatic actions may bound the emergence of functional, self-regulatory behaviours in learners. Ideas in ecological dynamics suggest that physical educators should design learning environments that offer a rich landscape of opportunities for action for learners. As illustration, three practice interventions are described for developing functional and transferrable skills in indoor aquatic environments. It is important that aquatic educators focus not just upon ‘learning to swim’, but particularly on relevant transferable skills and self-regulatory behaviours deemed necessary for functioning in dynamic, outdoor aquatic environments

    Structural insights into RNA processing by the human RISC-loading complex.

    Get PDF
    Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2

    Expressed sequence tag analysis of adult human optic nerve for NEIBank: Identification of cell type and tissue markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The optic nerve is a pure white matter central nervous system (CNS) tract with an isolated blood supply, and is widely used in physiological studies of white matter response to various insults. We examined the gene expression profile of human optic nerve (ON) and, through the NEIBANK online resource, to provide a resource of sequenced verified cDNA clones. An un-normalized cDNA library was constructed from pooled human ON tissues and was used in expressed sequence tag (EST) analysis. Location of an abundant oligodendrocyte marker was examined by immunofluorescence. Quantitative real time polymerase chain reaction (qRT-PCR) and Western analysis were used to compare levels of expression for key calcium channel protein genes and protein product in primate and rodent ON.</p> <p>Results</p> <p>Our analyses revealed a profile similar in many respects to other white matter related tissues, but significantly different from previously available ON cDNA libraries. The previous libraries were found to include specific markers for other eye tissues, suggesting contamination. Immune/inflammatory markers were abundant in the new ON library. The oligodendrocyte marker QKI was abundant at the EST level. Immunofluorescence revealed that this protein is a useful oligodendrocyte cell-type marker in rodent and primate ONs. L-type calcium channel EST abundance was found to be particularly low. A qRT-PCR-based comparative mammalian species analysis reveals that L-type calcium channel expression levels are significantly lower in primate than in rodent ON, which may help account for the class-specific difference in responsiveness to calcium channel blocking agents. Several known eye disease genes are abundantly expressed in ON. Many genes associated with normal axonal function, mRNAs associated with axonal transport, inflammation and neuroprotection are observed.</p> <p>Conclusion</p> <p>We conclude that the new cDNA library is a faithful representation of human ON and EST data provide an initial overview of gene expression patterns in this tissue. The data provide clues for tissue-specific and species-specific properties of human ON that will help in design of therapeutic models.</p

    Modeling recursive RNA interference.

    Get PDF
    An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments

    Fatal myocarditis in a child with systemic onset juvenile idiopathic arthritis during treatment with an interleukin 1 receptor antagonist

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathologic diagnosis of isolated myocarditis without pericardial involvement is uncommonly encountered in systemic onset Juvenile Idiopathic Arthritis (soJIA).</p> <p>Case</p> <p>An eleven year-old boy with soJIA died suddenly while being treated with the interleukin 1 (IL-1) receptor inhibitor, anakinra. His autopsy revealed an enlarged heart and microscopic findings were consistent with myocarditis, but not pericarditis. Viral PCR testing performed on his myocardial tissue was negative.</p> <p>Conclusion</p> <p>This case illustrates myocarditis as a fatal complication of soJIA, potentially enabled by anakinra.</p
    corecore