3,510 research outputs found

    Monitoring the cementitious materials subjected to sulfate attack with optical fiber excitation Raman spectroscopy

    Get PDF
    Formation of ettringite and gypsum from sulfate attack together with carbonation and chloride ingress have been considered as the most serious deterioration mechanisms of concrete structures. Although electrical resistance sensors and fiber optic chemical sensors could be used to monitor the latter two mechanisms on site, currently there is no system for monitoring the deterioration mechanisms of sulfate attack. In this paper, a preliminary study was carried out to investigate the feasibility of monitoring sulfate attack with optical fiber excitation Raman spectroscopy through characterizing the ettringite and gypsum formed in deteriorated cementitious materials under an optical fiber excitation + objective collection configuration. Bench-mounted Raman spectroscopy analysis was also conducted to validate the spectrum obtained from the fiber-objective configuration. The results showed that the expected Raman bands of ettringite and gypsum in the sulfate-attacked cement paste can be clearly identified by the optical fiber excitation Raman spectrometer and are in good agreement with those identified from bench-mounted Raman spectrometer. Therefore, based on these preliminary results, it is considered that there is a good potential for developing an optical fiber-based Raman system to monitor the deterioration mechanisms of concrete subjected to sulfate attack in the future

    CLT for eigenvalue statistics of large-dimensional general Fisher matrices with applications

    Get PDF
    Random Fisher matrices arise naturally in multivariate statistical analysis and understanding the properties of its eigenvalues is of primary importance for many hypothesis testing problems like testing the equality between two covariance matrices, or testing the independence between sub-groups of a multivariate random vector. Most of the existing work on random Fisher matrices deals with a particular situation where the population covariance matrices are equal. In this paper, we consider general Fisher matrices with arbitrary population covariance matrices and develop their spectral properties when the dimensions are proportionally large compared to the sample size. The paper has two main contributions: first the limiting distribution of the eigenvalues of a general Fisher matrix is found and second, a central limit theorem is established for a wide class of functionals of these eigenvalues. Applications of the main results are also developed for testing hypotheses on high-dimensional covariance matrices.published_or_final_versio

    Substitution principle for CLT of linear spectral statistics of high-dimensional sample covariance matrices with applications to hypothesis testing

    Get PDF
    published_or_final_versio

    CLT for linear spectral statistics of a rescaled sample precision matrix

    Get PDF
    postprin

    Application of Raman spectroscopy for tracing the status of silica fume in cementitious materials

    Get PDF
    Silica fume (SF) is an important component for manufacturing high performance concrete (HPC), owing to its superb pozzolanic reactivity and physical filling effects. However, application of SF in concrete may cause potential hazards issues. Although using SF in slurry form can somehow reduce the potential biotoxicity, the long-term stability and status of the SF particles within cementitious materials is still uncertain. In the current study, attempts were made to use Raman spectroscopy as an innovative alternative technique for tracing and identifying the status of SF both in its original SF slurry and in a 6-month-old hydrated cement paste. Light-optical microscope was also used to examine the morphology of the SF particles in the aforementioned samples. The results showed that under Raman spectroscopy, the various components of the SF in slurry, such as amorphous silica, silicon crystal, and carbon, were clearly recognised. In addition, the SF agglomerates formed in the slurry were also detected. On the other hand, the chemical composition, status, and morphology of both SF and SF agglomerates in the 6-month-old paste were also identified. The study reported in this paper indicates that Raman spectroscopy could be a potential technique for tracing the status of SF, so that the potential safety hazards of SF can be monitored

    Selective fluorescent probes for molecular imaging of ROS/RNS: Challenges and opportunities

    Get PDF
    Session-1: The Power of Technology - Key Note Speakerpublished_or_final_versio

    A Raman spectroscopy based optical fibre system for detecting carbonation profile of cementitious materials

    Get PDF
    Sensors demonstrate huge potential in civil engineering for monitoring the health condition and performance of concrete structures. Amongst various chemical deterioration mechanisms causing inadequate durability of concrete structures, carbonation is one of the most severe mechanisms. It occurs from the chemical reactions between intruded CO2 and calcium-bearing phases, hence is accompanied by the formation of calcium carbonate (CaCO3) and the decrease of the alkalinity of concrete pore solution, causing corrosion of rebar in concrete. Thus, detecting carbonation process, especially, determining the carbonation profile (i.e. the content of carbonation products formed against the depth into concrete structure), is of great importance to the diagnosis of the health condition of concrete structures and the prediction of service life. Unfortunately, existing sensors for health monitoring systems suffer from various limitations. Optical fibre Raman technology offers a unique opportunity for developing a novel chemical sensor system capable of monitoring the service-condition of concrete in situ. In the current work, a bespoke ‘coaxial’ optical fibre sensing platform based on Raman spectroscopy was successfully established with a 514.5 nm laser. All the optics were tailored for efficiently exciting and receiving signals from cementitious materials, and their diameters were restricted within 0.5 in. in order to explore the feasibility of developing an embeddable miniature sensor system in the future. This sensing system was then employed to detect the carbonation mechanism of a plain Portland cement (PC) paste. The calcium carbonate polymorphs as well as the carbonation profile in the PC paste was successfully recognised and established with the results being verified favourably by bench-mounted Raman, X-ray Diffraction (XRD) and Thermogravimetry (TG) analyses. Our results demonstrate a good potential for developing a novel Raman spectroscopy based optical fibre sensor system for monitoring the health condition and the performance of concrete structures in future

    Tracing the status of silica fume in cementitious materials with Raman microscope

    Get PDF
    Silica fume (SF) is an essential material for formulating high performance concrete (HPC). However, its small particle size could cause safety-hazards. Although replacing SF powder with slurry can somehow avoid the potential bio-toxicity, its long-term stability within cementitious materials is unknown. In this study, Raman microscope which combines Raman spectroscopy with light-optical microscope was successfully applied to characterise the composition and morphology of SF in original slurry and hydrated SF-Portland cement (PC) pastes. The unhydrated SF-agglomerates were clearly detected in the original SF slurry and the 22-hour and 6-month hydrated SF-PC pastes

    Characterisation of Magnetite Formed during the Corrosion Process by Raman Spectroscopy - a review

    Get PDF

    Establishing the Carbonation Profile with Raman Spectroscopy: Effects of Fly Ash and Ground Granulated Blast Furnace Slag

    Get PDF
    Establishing the carbonation profile is of great significance to the prediction of the service life of reinforced concrete structures. In our previous work, Raman spectroscopy was shown to be an efficient tool for characterizing calcium carbonate (CaCO3) polymorphs and their profile in plain Portland cement (PC) matrices. However, as supplementary cementitious materials (SCMs), particularly fly ash (FA) and ground granulated blast furnace slag (GGBS), are widely used in concrete, establishing the carbonation profile without considering the possible effects of these SCMs could be of little significance to the real world. This paper, thus, investigated the effects of FA and GGBS on the working capacity and reliability of Raman spectroscopy for establishing the carbonation profile in PC blends containing SCMs. The thermogravimetry (TG) analysis was also conducted to verify the results from Raman spectroscopy. The results show that Raman spectroscopy demonstrated a good capacity for differentiating the variation of CaCO3 contents in FA or GGBS blends. However, the incorporation of FA and GGBS into the PC system caused some adverse effects on the quantification of CaCO3 by Raman spectroscopy, which could be attributed to the darker color and weak scatter nature of FA and the high content of glassy phases in GGBS
    • …
    corecore