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Random Fisher matrices arise naturally in multivariate statistical analysis and understanding the properties
of its eigenvalues is of primary importance for many hypothesis testing problems like testing the equality
between two covariance matrices, or testing the independence between sub-groups of a multivariate random
vector. Most of the existing work on random Fisher matrices deals with a particular situation where the
population covariance matrices are equal. In this paper, we consider general Fisher matrices with arbitrary
population covariance matrices and develop their spectral properties when the dimensions are proportionally
large compared to the sample size. The paper has two main contributions: first the limiting distribution of
the eigenvalues of a general Fisher matrix is found and second, a central limit theorem is established for
a wide class of functionals of these eigenvalues. Applications of the main results are also developed for
testing hypotheses on high-dimensional covariance matrices.

Keywords: central limit theorem; equality of covariance matrices; large-dimensional covariance matrices;
large-dimensional Fisher matrix; linear spectral statistics

1. Introduction

For testing the equality of variances from two populations, a well-known statistic is the Fisher
statistic defined as the ratio of two sample variances. Its multivariate counter-part is a random
Fisher matrix defined by

F := B1B−1
2 , (1.1)

where B1 and B2 are p-dimensional sample covariance matrices from two independent sam-
ples, say {ξ k,1 ≤ k ≤ n1} and {η�,1 ≤ � ≤ n2} with population covariance matrices �1 and
�2, respectively. Fisher matrices, especially their eigenvalues, arise in many hypothesis testing
problems in multivariate analysis. Examples include the test of the equality hypothesis �1 = �2

where the likelihood ratio (LR) statistic can be written as a functional of the eigenvalues of a
Fisher matrix, see Bai et al. [2]. In multivariate analysis of variance (MANOVA), the test on the
equality of means is reduced to a statistic depending on a Fisher matrix which is a functional
of the “between” sum of squares and the “within” sum of squares (Anderson [1], page 346). In
multivariate linear regression, the likelihood ratio criterion for testing linear hypotheses about
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regression coefficients is expressed as a functional of the eigenvalues of a Fisher matrix (Ander-
son [1], page 298). To test the independence between sub-groups of a multivariate population, the
LR statistic is a functional of a Fisher matrix defined by sub-matrices of sample covariance ma-
trices (Anderson [1], page 381). Fisher matrices appear also in the canonical correlation analysis,
see Yang and Pan [26] for a recent account.

This paper concerns the high-dimensional situation where the population dimension p is large
compared to the sample sizes n1 and n2. It is now well understood that classical procedures as
those presented in Anderson [1] become impracticable or dramatically lose efficiency in high-
dimensional data. For example, the deficiency of the Hotelling’s T 2 statistic has been reported
in Dempster [12] and Bai and Saranadasa [3]. Regarding hypothesis testing on one population
high-dimensional covariance matrix, many recent works appeared in the literature, see Ledoit
and Wolf [13], Srivastava [23], Srivastava et al. [24] and Schott [18,19], among others. About the
equality of two population covariance matrices, please see Bai et al. [2], Cai, Liu and Xia [10], Li
and Chen [14] and Zheng, Bai and Yao [29] among others. For two-sample tests on covariance
matrices, Cai, Liu and Xia [10] and Li and Chen [14] use some ad-hoc distance measures to
avoid the corresponding Fisher matrix, particularly when p > n where the Fisher matrix is indeed
undefined. However, all these works are not scale invariant and require some regularities of the
population covariance matrix, for example, Cai, Liu and Xia [10] requires the sparsity condition,
and Li and Chen [14] requires that the eigenvalues of the population covariance matrices are not
dominated by a few of them. Therefore, tests defined by Fisher matrices are still important ones
in multivariate analysis. Furthermore, Zheng, Bai and Yao [29] presented an example showing
that tests defined by F matrices has larger powers than the method of Li and Chen [14] in a few
cases, after corrections using random matrix theory.

In the literature from random matrix theory and assuming that the dimension grows to infinity
proportionally to sample sizes, the convergence of the eigenvalues of a Fisher matrix to a limiting
distribution has been studied under the equality of two population covariance matrices by several
authors, see e.g. Wachter [25], Bai [5], Bai et al. [9], Pillai [16], Pillai and Flury [17], Silver-
stein [20] and Yin et al. [27]. As an important contribution of the paper, we establish a limiting
distribution for the eigenvalues of a general Fisher matrix with arbitrary population covariance
matrices. Regarding central limit theorems for linear spectral statistics (or LSS), Chatterjee [11]
establishes the existence of a Gaussian limit assuming that the populations are Gaussian. How-
ever, he does not provide explicit formulae for the asymptotic mean and asymptotic covariances
of the Gaussian limit. A closely related work by Bai and Silverstein [7] establishes a CLT for
spectral statistics of a general sample covariance matrices of form B1Tp where B1 is a sample
covariance matrix and Tp is a non-random Hermitian matrix. This CLT is later refined in Pan
and Zhou [15] where the original restriction on the values of the fourth moments of the popula-
tion components is removed. However, the CLT in Bai and Silverstein [7] cannot cover spectral
statistics of a Fisher matrix through simply replacing Tp by B−1

2 for the reason that the centering
term of this CLT would thus become a random term without an explicit expression. To overcome
this difficulty, Zheng [28] establishes a CLT for LSS of a Fisher matrix which has a non-random
and explicit centering term. In particular, the components of the observations {ξ i} and {ηj } can
have an arbitrary fourth moment. To our best knowledge, this is the only CLT reported in the
literature for LSS of a Fisher matrix. However, this CLT has a severe limitation with the assump-
tion that the population covariance matrices are equal that is, �1 = �2. Although the derivation
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of this CLT is complex and highly nontrivial, it has a small impact on the statistical problems
mentioned above where the population covariance matrices �i can be arbitrary and not neces-
sarily equal. Specifically, for the test of the equality hypothesis “�1 = �2”, this CLT enables us
to find the distribution of the LR statistic under the null hypothesis, but not under the alternative
“�1 �= �2”, that is, the asymptotic test size of the test can be found by this CLT but not the power
function.

The main contribution of the paper is the establishment of a central limit theorem for linear
spectral statistics {Wn} of a general Fisher matrix where the population covariance matrices �i

are arbitrary. Under this scheme and as a preparatory step, we also establish a limiting distribu-
tion for their eigenvalues and give an explicit equation satisfied by its Stieltjes transform. Due
to the fact that the population covariance matrices are arbitrary, the proofs of these results have
required several new techniques compared to the existing literature on the central limit theory al-
though the general scheme remains similar to the one used in Bai and Silverstein [7], Zheng [28].
A significantly different tool used here is another CLT reported in Zheng, Bai and Yao [30] for
random matrix of type S−1Tp where S is a standard sample covariance matrix (with i.i.d. stan-
dardised components) and Tp a nonnegative definite and deterministic Hermitian matrix. These
two papers are related to each other but focus on different random matrices.

The paper is organized as follows. In Section 2, we first introduce the asymptotic scheme and
the technical assumptions used, and then establish the limiting spectral distribution of the eigen-
values. Section 3 presents the CLT for linear spectral statistics of general Fisher matrices which
is the main result of the paper. Section 4 gives two algorithms for approximation of the limit-
ing spectral density, the asymptotic mean and covariance functions involved in the new CLT. In
Section 5, applications of the main results are proposed for hypothesis testing and confidence in-
tervals about high-dimensional covariance matrices. Technical lemmas and proofs are postponed
to the Appendix B.

2. Limiting spectral distribution of large dimensional general
F -matrices

Following Bai and Silverstein [7] and Zheng [28], we will impose the following structure on the
observation model. Assume that the samples can be expressed as

ξ k = Q1X·k, 1 ≤ k ≤ n1; η� = Q2Y·�, 1 ≤ � ≤ n2,

where the observation matrices

X := (X·1, . . . ,X·n1) = (Xjk : 1 ≤ j ≤ p,1 ≤ k ≤ n1),

Y := (Y·1, . . . ,Y·n2) = (Yj� : 1 ≤ j ≤ p,1 ≤ � ≤ n2),

are the upper-left corners, of size p × n1 and p × n2, of two independent arrays of independent
random variables {Xjk, j, k = 1,2, . . .} and {Yjk, j, k = 1,2, . . .}, respectively, and Qi is any
square matrix such that QiQ∗

i = �i , i = 1,2 where ∗ denotes the (complex) adjoint of a matrix
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(i.e., transpose and conjugate). The corresponding sample covariance matrices become

B1 = 1

n1

n1∑
k=1

ξ kξ
∗
k = Q1S1Q∗

1, with S1 = 1

n1

n1∑
k=1

X·kX∗·k, (2.1)

B2 = 1

n2

n2∑
�=1

η�η
∗
� = Q2S2Q∗

2, with S2 = 1

n2

n2∑
�=1

Y·�Y∗·�. (2.2)

Because F = B1B−1
2 has the same eigenvalues as S1T∗

p,1/2S−1
2 Tp,1/2 where Tp,1/2 = Q−1

2 Q1,

we can define as well the Fisher matrix to be F := S1T∗
p,1/2S−1

2 Tp,1/2. It is also noticed that
obviously, the matrix S2 should be invertible (almost surely) so that in our asymptotic analysis,
we will assume n2 > p for large p and n2.

Throughout the paper, the empirical spectral distribution (or ESD) of a complex p ×p matrix
A is the probability measure F A

n (x) = p−1 ∑p

j=1 δλj
where {λj }pj=1 are the eigenvalues of A,

and δa denotes the Dirac mass at a point a. We consider the following assumptions.

Assumption [A]. The two double arrays {Xki, i, k = 1,2, . . .} and {Yki, i, k = 1,2, . . .} consist
of independent but not necessarily identically distributed random variables with mean 0 and
variance 1.

Assumption [B1]. For any fixed η > 0 and when n1, n2,p → ∞,

1

n1p

p∑
j=1

n1∑
k=1

E
[|Xjk|2I{|Xjk |≥η

√
n1}

] → 0,
1

n2p

p∑
j=1

n2∑
k=1

E
[|Yjk|2I{|Yjk |≥η

√
n2}

] → 0. (2.3)

Assumption [B2]. If the two arrays are either both real, we then set the indicator κ = 2; or
both complex, we then set κ = 1, with homogeneous 4th moments: E|Xjk|4 = 1 + κ + βx + o(1),
E|Yjk|4 = 1 + κ + βy + o(1). Moreover, for any fixed η > 0 when n1, n2,p → ∞,

1

n1p

p∑
j=1

n1∑
k=1

E
[|Xjk|4I{|Xjk |≥η

√
n1}

] → 0,
1

n2p

p∑
j=1

n2∑
k=1

E
[|Yjk|4I{|Yjk |≥η

√
n2}

] → 0. (2.4)

In addition, EX2
jk = o(n−1

1 ),EY 2
jk = o(n−1

2 ) when both arrays {Xjk} and {Yjk} are complex.

Assumption [C]. The sample sizes n1, n2 and the dimension p grow to infinity in such a way that

yn1 := p/n1 → y1 ∈ (0,+∞), yn2 := p/n2 → y2 ∈ (0,1), (2.5)

where S2 has the inverse matrix S−1
2 .

Assumption [D]. The matrices Tp = Tp,1/2T∗
p,1/2 are non-random and nonnegative definite

Hermitian matrices and the sequence {Tp} is bounded in spectral norm. Moreover, the ESD
Hp of Tp tends to a proper probability measure H when p → ∞.
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Table 1. Notations for distributions, Stieltjes transforms (S.T.) and linear spectral statistics (LSS) of ran-
dom matrices

Matrix ESD/S.T. LSD/S.T. LSS

F = S1T∗
p,1/2S−1

2 Tp,1/2 Un(x)/mn(z) Uy(x)/my(z) Un(f ) = ∫
f (x)dUn(x)

Uy(f ) = ∫
f (x)dUy(x)

X∗T∗
p,1/2S−1

2 Tp,1/2X/n1 Un(x)/mn(z) Uy(x)/my(z)

Here mn(z) = ∫ 1
λ−z dUn(x), my(z) = ∫ 1

λ−z dUy(x), mn(z) = ∫ 1
λ−z dUn(x), my(z) = ∫ 1

λ−z dUy(x), f is an ana-

lytic function, Un(f ) = p−1 ∑p
j=1 f (λF

j
) with the eigenvalues {λF

j
}p
j=1 of F and Uyn (x) is obtained by substituting

yn = (yn1 , yn2 ) for y = (y1, y2) in Uy(x).

The assumptions (2.3) and (2.4) are standard Lindeberg type conditions which are necessary
for the existence of the limiting spectral distribution for F, and for the CLT for LSS of F, respec-
tively. Moreover, under these conditions, the variables {Xik} and {Yik} can be truncated at size
ηp

√
p (ηp ↓ 0) without altering asymptotic results.

The following notations are used throughout the paper:

n = (n1, n2), yn = (yn1, yn2), y = (y1, y2), h2 = y1 + y2 − y1y2.

In the sequel, the limiting results will be investigated under the regime (2.5) that will be simply
referred as n → ∞. Some useful concepts are now recalled. The Stieltjes transform of a positive
Borel measure G on the real line is defined by

mG(z) ≡
∫

1

λ − z
dG(λ), z ∈C

+ = {
z : z ∈ C,�(z) > 0

}
. (2.6)

This transform has a natural extension to the lower-half plane by the formula

mG(z) = mG(z̄) for z ∈C
− = {

z : z ∈C,�(z) < 0
}
.

In addition to F, we will also need several other matrices. Table 1 contains the notations used in
the sequel for the characteristics of these matrices: ESD, LSD, the associated Stieltjes transforms
and LSS.

The matrices F and X∗T∗
p,1/2S−1

2 Tp,1/2X/n1 are companion matrices each other sharing same
nonnull eigenvalues so that we have

mn(z) = −1 − yn1

z
+ yn1mn(z), (2.7)

my(z) = −1 − y1

z
+ y1my(z). (2.8)

Furthermore, when �1 = �2, that is, Tp = Ip , it is well-known that the LSD Uy of F and its
Stieltjes transform my(z) can be found on page 79 of Bai and Silverstein [4]. As a first result of
the paper, we prove the existence of Uy and one of its characteristics for general Fisher matrix F
where Tp is a Hermitian matrix.
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Theorem 2.1. Under Assumptions [A], [B1], [C] and [D], The Fisher matrix

F = S1T∗
p,1/2S−1

2 Tp,1/2

has a non-random LSD Uy. Moreover, Uy is characterized by the fact that the Stieltjes transform
my(z) of its companion measure Uy is the unique solution to the equation

z = h2m0(z)

y2(−1 + y2
∫

m0(z) dH(t)
t+m0(z)

)
+ y1

y2
m0(z), z ∈ C

+, (2.9)

where m0(z) = my2
(−my(z)) and my2

(z) satisfies the equation z = −(my2
(z))−1 + y2

∫
(t +

my2
(z))−1 dH(t).

The proof of this theorem is given in Appendix B.1.

Remark 2.1. If the Assumption [B1] in Theorem 2.1 is strengthened to [B2], following Bai and
Yin [8], after truncation, one can show that with probability 1, S2 is invertible. However, under
the Assumption [B1], there may be a small portion of eigenvalues of B2 equal or tending to zero.
In this case, Theorem 2.1 remains true if S−1

2 is understood as the Moore–Penrose generalized
inverse of S2.

Remark 2.2. For a given z ∈ C
+, the equation (2.9) has a unique solution m0 such that

�(m0) < 0.

In fact by Silverstein [21], my(z) is the unique solution to the equation

z = − 1

my(z)
+ y1

∫
x dGy2(x)

1 + xmy(z)
, (2.10)

subject to the condition that �(
1−y1

z
+ my(z))�(z) > 0. Here, Gy2 denotes the limiting spectral

distribution of the random matrix T∗
p,1/2S−1

2 Tp,1/2.
In the sequel, for brevity, the notations my(z) and my(z) will be simplified to m(z) and m(z),

or even to m and m, respectively, if no confusion would be possible. We will use the notation
Gyn2

that is obtained by substituting yn2 = p/n2 for y2 in Gy2 .

3. CLT for LSS of large dimensional general Fisher matrices

We consider a centered version of the LSS

p
[
Un(f ) − Uyn(f )

] =
p∑

j=1

f
(
λF

j

) − p

∫
f (x)dUyn(x) (3.1)

with the eigenvalues {λF
j }pj=1 of F. Note that (3.1) is translation-invariant in f , we may assume

f (0) = 0. Due to the exact separation theorem (see Bai and Silverstein [6]), with probability
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one, for large enough nj and p, the possible point mass at the origin of Un will coincide exactly
with that of Uyn . By Theorem 1.1 of Silverstein and Choi [22], Uy has the continuous density
uy except x = 0. Therefore, we can restrict the integral (3.1) to their continuous components on
(0,∞), that is,

p
[
Un(f ) − Uyn(f )

] =
p∑

j=1

f
(
λF

j

)
I(λF

j >0) − p

∫
f (x)uyn(x) dx, (3.2)

where uyn(x) is the density of Uyn(x).
Regarding the central limit theory on linear spectral statistics of random matrices, it has been

well known (Bai and Silverstein [7], Pan and Zhou [15], Zheng [28]) that the mean and co-
variance parameters of the limiting Gaussian distribution depend on the values of the fourth
moments of {Xjk} and {Yjk}. When these moments match the Gaussian case, that is, βx = 0 or
βy = 0 in Assumption [B2], the limiting parameters have a simpler expression. Otherwise, they
have a more involved expression that depends on other limiting functionals of sample covariance
matrices. More specifically, if βx �= 0, we will need the existence of the following limits

1

p

p∑
i=1

E
[
e′
iT

∗
p,1/2S−1/2

2 D−1
1 S−1/2

2 Tp,1/2ei

(3.3)
× e′

iT
∗
p,1/2S−1/2

2 D−1
1

(
m(z)S−1/2

2 TpS−1/2
2 + Ip

)−1S−1/2
2 Tp,1/2ei |S2

]−→hm1(z),

1

n1p

n1∑
j=1

p∑
i=1

e′
iT

∗
p,1/2S−1/2

2

[
Ej D−1

1j (z1)
]
S−1/2

2 Tp,1/2ei

(3.4)
× e′

iT
∗
p,1/2S−1/2

2

[
Ej D−1

1j (z2)
]
S−1/2

2 Tp,1/2ei
i.p.−→ hv1(z1, z2),

where Ej denotes the conditional expectation given X·1, . . . ,X·j and S2, and if βy �= 0, we will
need the existence of the limits

1

p

p∑
i=1

Ee′
i

(
m(z)Tp + S2

)−1ei · e′
i

(
m(z)Tp + S2

)−1Tp

(
m(z)Tp + m(z)m0(z)Ip

)−1ei

(3.5)
−→hm2

(−m−1(z)
)
,

1

n2p

n2∑
j=1

p∑
i=1

e′
iEj

(
m(z1)Tp + S2,j

)−1ei · e′
iEj

(
m(z2)Tp + S2,j

)−1ei

(3.6)
i.p.−→ hv2

(−m−1(z1),−m−1(z2)
)
,

where Ej denotes the conditional expectation given Y·1, . . . ,Y·j . Here

S2,j = S2 − ηjη
∗
j , D1(z) =

n1∑
i=1

γ iγ
∗
i − zIp, D1j (z) = D1(z) − γ jγ

∗
j ,
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and ei denotes the ith vector of the canonical basis of C
p where ηj = n

−1/2
2 Y·j and γ j =

n
−1/2
1 S−1/2

2 Tp,1/2X·j .
The following CLT is the main result of the paper.

Theorem 3.1. Under the Assumptions [A], [B2], [C] and [D], assume that the limits (3.3)–(3.4)
exist whenever βx �= 0, and the limits (3.5)–(3.6) exist whenever βy �= 0. Let f1, . . . , fs be s

functions analytic in an open domain of the complex plane that enclosed the support interval
[c1, c2] of the continuous component of the LSD Uy. Then, as n → ∞, the random vector

{
p
[
Un(fj ) − Uyn(fj )

]
,1 ≤ j ≤ s

}
,

converges weakly to a Gaussian vector (Xf1 , . . . ,Xfs ) with the mean function

EXf = κ − 1

4πi

∮
C

f (z) d log

(
h2

y2
− y1

y2
· (1 − y2

∫
m0(z)

t+m0(z)
dH(t))2

1 − y2
∫ m2

0(z)

(t+m0(z))
2 dH(t)

)

− βxy1

2πi
·
∮
C

f (z)
z2m3(z) · hm1(z)

h2

y2
− y1

y2
· (1−∫ y2m0(z)

t+m0(z)
dH(t))2

1−∫ y2m2
0(z)

(t+m0(z))2
dH(t)

dz

(3.7)

+ κ − 1

4πi

∮
C

f (z) d log

(
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)

+ βyy2

2πi
·
∮

f (z)m′(z)
m3(z)m3

0(z)hm2(−m−1(z))

1 − y2
∫ m2

0(z)

(t+m0(z))
2 dH(t)

dz,

and the covariance function

Cov (Xfi
,Xfj

)

= −βxy1

4π2
·
∮
C1

∮
C2

fi(z1)fj (z2)
∂2[z1z2m(z1)m(z2)hv1(z1, z2)]

∂z1 ∂z2
dz1 dz2

− κ

4π2

∮
C1

∮
C2

fi(z1)fj (z2)

(m0(z1) − m0(z2))2
dm0(z1) dm0(z2) (3.8)

− βyy2

4π2

∮
C1

∮
C2

fi(z1)fj (z2)

× ∂2[m(z1)m0(z1)m(z2)m0(z2)hv2(−m−1(z1),−m−1(z2))]
∂z1 ∂z2

dz1 dz2,

where the contours C, C1 and C2 all enclose the support of Uy, and C1 and C2 are disjoint.
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Similar to CLT’s developed in Bai and Silverstein [7], Zheng [28], all the limiting parameters
depend on contour integrals using the associated Stieltjes transforms. Some specific examples of
calculations of such integrals can be found in these references.

When Tp’s are diagonal, we find explicit expressions for the limiting functions hmj (z) and
hvj (z1, z2), j = 1,2. This in turn simplifies the expressions of limiting mean and covariance
functions in the CLT. Two propositions about hmj (z) and hvj (z1, z2) are given in Appendix A.
In this case, the limiting mean and covariance function in Theorem 3.1 are simplified as follows.

Theorem 3.2. Under the conditions of Theorem 3.1 and assuming that the matrices Tp’s are
diagonal, we obtain that as n → ∞, the random vector{

p
[
Un(fj ) − Uyn(fj )

]
,1 ≤ j ≤ s

}
,

converges weakly to a Gaussian vector (Xf1 , . . . ,Xfs ) with the mean function

EXf = κ − 1

4πi

∮
C

f (z) d log

(
h2

y2
− y1

y2
· (1 − y2

∫
m0(z)

t+m0(z)
dH(t))2

1 − y2
∫ m2

0(z)

(t+m0(z))
2 dH(t)

)

+ κ − 1

4πi

∮
C

f (z) d log

(
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)

+ βxy1

2πi

∮
C

f (z)

[∫
t2

(t + m0(z))3
dH(t)

]
dm0(z)

+ βy

4πi

∮
C

f (z)

(
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)
d log

(
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)

and the covariance function

Cov (Xfi
,Xfj

)

= − κ

4π2

∮
C1

∮
C2

fi(z1)fj (z2)

(m0(z1) − m0(z2))2
dm0(z1) dm0(z2)

− βxy1 + βyy2

4π2

×
∮
C1

∮
C2

fi(z1)fj (z2)

[∫
t2 dH(t)

(t + m0(z1))2(t + m0(z2))2

]
dm0(z1) dm0(z2),

where the contours C, C1 and C2 all enclose the support of Uy, and C1 and C2 are disjoint.

Remark 3.1. The contours in Theorem 3.1 and Propositions A.1–A.2 are taken in the z space.
In this case, the contours can be arbitrary provided that they enclose the support of the LSD Uy.
Since the integrands are functions of m0, thus the integrals can be taken in the m0 space using
the change of variable z �→ m0(z).
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Remark 3.2. When Tp is an identity matrix, (A.3) and (A.4) are the same as (3.6) and (3.7) in
Zheng [28]. That is, Theorem 3.2 in Zheng [28] is a special case of Theorem 3.2 in this paper
when Tp = Ip .

4. Evaluation of the asymptotic parameters EXf ,
Cov(Xfi

,Xfj
) and the limiting density uy(x)

Notice that practical applications of Theorem 3.1 or Proposition A.1 require the knowledge
of the limiting spectral density uy(x), the asymptotic mean EXf and covariance function
Cov(Xfi

,Xfj
). In particular, the last two functions depend on some non trivial contour integrals.

In the simple case where Tp = Ip and for simple functions like f (x) = xj or f (x) = log(x), an-
alytical results can be found exactly, see Zheng [28]. However, this is a very particular case and
for general population matrices or more complex functions f , such exact results are not avail-
able. In this section, we introduce some numerical procedures to approximate these asymptotic
parameters while deliberately place ourselves in the context of practical applications with real
data sets. In such a situation, the sample sizes and dimension of data (n1, n2,p) are given and
the empirical spectral distribution Hp of Tp = Tp,1/2T∗

p,1/2 is known. In this section, we denote

the eigenvalues of Tp simply by {λ0
j }pj=1 so that Hp(t) = p−1 ∑p

j=1 I(λ0
j ≤t). However in such a

concrete application situation, the LSD H is never known and we need an estimate of H . A very
reasonable and widely used estimate of H is indeed just Hp .

Notice that the parameters uy(x), EXf and Cov(Xfi
,Xfj

) all depend on the Stieltjes trans-
form m0(z). By (2.9), we have

z = h2m0(z)

y2(−1 + y2
∫

m0(z) dH(t)
t+m0(z)

)
+ y1

y2
m0(z).

That is,

m0(z) = z

(
h2

y2(−1 + y2
∫

m0(z) dH(t)
t+m0(z)

)
+ y1

y2

)−1

,

which leads to numerical approximations of m0(z). Choose s0(z) be the initial values of m0(z)

and iterate for k ≥ 0 the above mapping

sk+1(z) = z

(
h2

y2(−1 + y2
∫

sk(z) dH(t)
t+sk(z)

)
+ y1

y2

)−1

(4.1)

until convergence and let sk(z) be the final values. Define the approximate value for m0(z) be
sk(z).

Next, the limiting spectral density uy(x) can be approximated as follows.
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Remark 4.1. By Theorem B.10 of Bai and Silverstein [4], we have

m(z) = 1

m0(z)
− y2

∫
dH(t)

t + m0(z)
≈ 1

m0(z)
− y2p

−1
p∑

j=1

1

λ0
j + m0(z)

(4.2)

and

uy(x) = 1

πy1
lim

ε→o+
�(

m(x + εi)
)
, (4.3)

where {λ0
j }pj=1 are the eigenvalues of Tp .

The following remark will give a simplified form of the asymptotic mean function EXf and
asymptotic covariance function Cov(Xfi

,Xfj
).

Remark 4.2. In Proposition A.1, assuming that Tp’s are diagonal, then by (A.3)–(A.4) and (1.7)
in Bai and Silverstein [7], the mean and covariance functions have the alternative expressions

EXf = −κ − 1

4πi

∮
C

f ′(z) log

(
h2

y2
− y1

y2
· (1 − y2

∫
m0(z)

t+m0(z)
dH(t))2

1 − y2
∫ m2

0(z)

(t+m0(z))
2 dH(t)

)
dz

− κ − 1

4πi

∮
C

f ′(z) log

(
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)
dz

(4.4)

− βxy1

2πi

∮
C

f (z)

∫
t2

(t+m0(z))
3 dH(t) · (−1 + y2

∫
m0(z)

t+m0(z)
dH(t))2(

h2

y2
− y1

y2

m2
y(z)m2

0(z)

1−y2
∫ m2

0(z)

(t+m0(z))2
dH(t)

)(
1 − y2

∫ m2
0(z)

(t+m0(z))
2 dH(t)

) dz

+ βyy2

2πi

∮
C

f (z)
m0(z)

∫
t dH(t)

(t+m0)
3

1 − y2
∫ m2

0 dH(t)

(t+m0)
2

(−1 + y2
∫

m0(z)
t+m0(z)

dH(t))2(
h2

y2
− y1

y2

m2
y(z)m2

0(z)

1−y2
∫ m2

0(z)

(t+m0(z))2
dH(t)

) dz

and

Cov(Xfi
,Xfj

)

= − κ

2π2

∫ ∫
f ′

i (x)f ′
j (y) log

∣∣∣∣m(x) − m(y)

m(x) − m(y)

∣∣∣∣dx dy (4.5)

− βxy1 + βyy2

4π2

∮ ∮
f ′

i (z1)f
′
j (z2)

[∫
t2 dH(t)

(t + m0(z1))(t + m0(z2))

]
dz1 dz2.

Combining Remarks 4.1 and 4.2, we now describe the general procedure to approximate the
limiting spectral density uy(x), the asymptotic mean and covariance functions.
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Figure 1. Contours used to approximate the asymptotic mean and covariance.

Algorithm 1: Approximating the limiting spectral density uy(x). Cut the support set [c1, c2] of
the LSD of the Fisher matrix F into a mesh set as

A=
{
zj = xj + εi, xj = c1 + (c2 − c1)j

K
, j = 0, . . . ,K

}
,

where ε is a small step size, e.g. 10−3. By (4.1), we obtain m0(zj ) with zj ∈ A. By (4.2), we
obtain m(zj ) with zj ∈ A. Then by (4.3). let

uy(xj ) � 1

πy1
�(

m(zj )
)
, (4.6)

which is an approximation of the density uy(xj ). Then we have

∫
f (x)uy(x) dx ≈ c2 − c1

K

K∑
l=1

f (xl)uy(xl). (4.7)

Algorithm 2: Approximating the asymptotic mean function (4.4) and covariance function (4.5).
Step 1. Choose two disjoint contours C1 and C2 both enclosing the support [c1, c2] of uy as

depicted on Figure 1 where ε and ζ are small numbers, for example, ε = ζ = 10−3.
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Step 2. Let K1,K2 be large integers, e.g. 103. Then C1 and C2 are cut into a grid set as

A1 =
{
zk = c1 − ε +

(
ζ − 2ζk

K1

)
i, k = 0, . . . ,K1,

zK1+j = c1 − ε + (c2 − c1 + 2ε)j

K2
− ζ i, j = 0, . . . ,K2,

zK1+K2+k = c2 + ε +
(

−ζ + 2ζk

K1

)
i, k = 0, . . . ,K1,

z2K1+K2+j = c2 + ε − (c2 − c1 + 2ε)j

K2
+ ζ i, j = 0, . . . ,K2

}
,

A2 =
{
zk = c1 − ε

2
+

(
ζ

2
− ζk

K1

)
i, k = 0, . . . ,K1,

zK1+j = c1 − ε

2
+ (c2 − c1 + ε)j

K2
− ζ

2
i, j = 0, . . . ,K2,

zK1+K2+k = c2 + ε

2
+

(
−ζ

2
+ ζk

K1

)
i, k = 0, . . . ,K1,

z2K1+K2+j = c2 + ε

2
− (c2 − c1 + ε)j

K2
+ ζ

2
i, j = 0, . . . ,K2

}
.

Step 3. By (4.1), we obtain m0(zj ). By (4.2), we obtain m(zj ). Then the mean and covariance
functions are approximated by

EXf ≈ −κ − 1

4π

2K1+2K2−1∑
j=0

�
[
f ′(zj ) log

(
h2

y2
− y1

y2
·
(1 − y2

∫ m0(zj )

t+m0(zj )
dH(t))2

1 − y2
∫ m2

0(zj )

(t+m0(zj ))2 dH(t)

)
(zj+1 − zj )

]

− κ − 1

4π

×
2K1+2K2−1∑

j=0

�
[
f ′(zj ) log

(
1 − y2

∫
m2

0(zj ) dH(t)

(t + m0(zj ))2

)
(zj+1 − zj )

]

− βxy1

2π
(4.8)

×
2K1+2K2−1∑

j=0

�
[
f (zj )

∫
t2

(t+m0(zj ))3 dH(t) · (−1 + y2
∫ m0(zj )

t+m0(zj )
dH(t))2(zj+1 − zj )(

h2

y2
− y1

y2

m2
y(zj )m2

0(zj )

1−y2
∫ m2

0(zj )

(t+m0(zj ))2
dH(t)

)(
1 − y2

∫ m2
0(zj )

(t+m0(zj ))2 dH(t))

]
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+ βyy2

2π

×
2K1+2K2−1∑

j=0

�
[
f (zj )

m0(zj )
∫

t dH(t)

(t+m0(zj ))3

1 − y2
∫ m2

0(zj ) dH(t)

(t+m0(zj ))2

(−1 + y2
∫ m0(zj )

t+m0(zj )
dH(t))2(zj+1 − zj )(

h2

y2
− y1

y2

m2(zj )m2
0(zj )

1−y2
∫ m2

0(zj )

(t+m0(zj ))2
dH(t)

) ]

and

Cov(Xfi
,Xfj

)

≈ − κ

2π2

K2∑
k,l=0

I(k �=l)�
(

f ′
i (zK1+k)f

′
j (zK1+l ) log

∣∣∣∣ m(x) − m(y)

m(zk) − m(zl)

∣∣∣∣
)

(c2 − c1)
2/K2

1 (4.9)

− βxy1 + βyy2

4π2

2K1+2K2−1∑
j,k=0

�
[
f ′

i (z1k)f
′
j (z2l )

∫
t2 dH(t)(z1,k+1 − z1k)(z2,l+1 − z2l )

(t + m0(z1k))(t + m0(z2k))

]
,

where zK1+k ∈ A1, zK1+l ∈A2, z1k ∈A1 and z2l ∈A2 and I(·) = 1 is an indicator function.

5. Applications to high-dimensional statistical analysis

In this section, we introduce two applications of the theory developed in the paper to two high-
dimensional statistical problems.

5.1. Power function for testing the equality of two high-dimensional
covariance matrices

First, we consider the two-sample test of the hypothesis that two high-dimensional covariance
matrices are equal, that is,

H0 : �1 = �2 vs. H1 : �1 �= �2. (5.1)

By Zheng, Bai and Yao [29], the likelihood ratio test statistic for (5.1) is

−Tn =
p∑

i=1

log(yN1 + yN2λi) −
p∑

i=1

yN2

yN1 + yN2

logλi − log(yN1 + yN2),

where λi ’s are eigenvalues of a Fisher matrix AB−1 with

A = 1

N1

n1∑
k=1

�
1/2
1 (X·k − X̄)(X·k − X̄)T �

1/2
1 , B = 1

N2

n2∑
k=1

�
1/2
2 (Y·k − Ȳ)(Y·k − Ȳ)T �

1/2
2 ,
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where Ni = ni − 1 and yNi
= p/Ni for i = 1,2. Under H0 and as n → ∞, we have

T̃n = υ(f )−1/2[Tn − p · FyN1 ,yN2
(f ) − m(f )

] H0⇒ N(0,1), (5.2)

where f (x) = log(yN1 + yN2x) − yN2
yN1 +yN2

logx, FyN1 ,yN2
(f ), m(f ) and υ(f ) are

FyN1 ,yN2
(f ) = h2

yN1yN2

log
yN1yN2

h2
+ yN2(1 − yN1)

yN1(yN1 + yN2)
log(1 − yN1)

+ yN1(1 − yN2)

yN2(yN1 + yN2)
log(1 − yN2),

m(f ) = 1

2

[
log

h2

yN1 + yN2

− yN2 log(1 − yN1)

yN1 + yN2

− yN1 log(1 − yN2)

yN1 + yN2

+ yN1yN2(βxyN2 + βyyN1)

(yN1 + yN2)
2

]
,

υ(f ) = − 2y2
N1

(yN1 + yN2)
2

log(1 − yN2) − 2y2
N2

(yN1 + yN2)
2

log(1 − yN1) + 2 log
h2

yN1 + yN2

.

Then the critical region at the test size α = 0.05 is{
Tn > 1.64υ(f )1/2 + p · FyN1 ,yN2

(f ) + m(f )
}
.

By Theorem 3.1 in this paper, under H1 we have

υ1(f )−1/2[Tn − p · F 1
yN1 ,yN2

(f ) − m1(f )
] H1⇒ N(0,1),

where m1(f ) and υ1(f ) can be approximated by (4.8) and (4.9), and F 1
yN1 ,yN2

(f ) by

F 1
yN1 ,yN2

(f ) =
∫ c2

c1

f (x)uy(x) dx ≈ c2 − c1

103

103∑
j=1

f (xj )uy(xj ), xj = c1 + (c2 − c1)j

103

and uy(xj ) is computed by (4.6). Since

Tn ≥ 1.64υ(f )1/2 + p · FyN1 ,yN2
(f ) + m(f )

⇔ υ1(f )−1/2[Tn − p · F 1
yN1 ,yN2

(f ) − m1(f )
]

≥ υ1(f )−1/2[1.64υ(f )1/2 + p · FyN1 ,yN2
(f ) + m(f ) − p · F 1

yN1 ,yN2
(f ) − m1(f )

]
,

then the power function of the test is

1 − �
(
υ1(f )−1/2[1.64υ(f )1/2 + p · FyN1 ,yN2

(f ) + m(f )
(5.3)

− p · F 1
yN1 ,yN2

(f ) − m1(f )
])

,
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Figure 2. Power function is for (5.3) in the testing problem (5.1) by numerical methods (4.7), (4.8) and
(4.9).

where �(·) is the standardized normal distribution function.
To show the feasibility of the proposed numerical methods (4.7)–(4.8)–(4.9), we plot the power

function (5.3) for the testing problem (5.1) in the Gaussian case where p = 300, n1 = 600, n2 =
6000, �1 is the identity matrix and �2 = diag(1, . . . ,1, c, . . . , c) with the parameter c = 1.00,
1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.40, 1.50 and the number of c in �2 being p/2. The numerical
power function (5.3) for the testing problem (5.1) is plotted in Figure 2. Moreover, we compare
the true values with numerical values of FyN1 ,yN2

(f ),m(f ),Cov(f ) in Table 2 in the case of
�1 = �2. These values are very close each other and the proposed numerical methods perform
well.

Table 2. True values and numerical values of three parameters FyN1 ,yN2 (f ),m(f ),υ(f ) where a-3e =
a · 10−3

True values of Numerical values of

FyN1 ,yN2 (f ) m(f ) υ(f ) FyN1 ,yN2 (f ) m(f ) υ(f )

y1 = 0.2, y2 = 0.02 9.775-3e 10.111-3e 0.376-3e 9.772-3e 10.151-3e 0.382-3e
y1 = 0.3, y2 = 0.03 15.269-3e 16.151-3e 0.918-3e 15.264-3e 16.232-3e 0.938-3e
y1 = 0.4, y2 = 0.04 21.282-3e 23.101-3e 1.790-3e 21.274-3e 23.254-3e 1.835-3e
y1 = 0.5, y2 = 0.05 27.998-3e 31.657-3e 3.121-3e 27.931-3e 31.562-3e 3.199-3e
y1 = 0.6, y2 = 0.06 35.449-3e 41.186-3e 5.050-3e 35.429-3e 41.730-3e 5.239-3e
y1 = 0.5, y2 = 0.5 170.085-3e 199.063-3e 110.863-3e 169.899-3e 202.7326-3e 117.783-3e
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5.2. Confidence interval of θ in Tp(θ)

As the second application, we consider Tp = Tp(θ), that is, Tp is determined by the parameter
θ which takes values in an interval [a, b]. We are interested in the confidence interval for the
parameter θ . Then using the fact

υθ (f )−1/2[Tn − p · Fθ
yN1 ,yN2

(f ) − mθ(f )
] H1⇒ N(0,1),

we will give a method to determine the confidence interval of the parameter θ .
First, cut [a, b] as A3 = {θj = a + (b−a)j

N
, j = 0, . . . ,N} where N is a large integer, for exam-

ple, 103. Giving θj , that is, Tp = Tp(θj ) and using Algorithms 1–2, we obtain mθj (f ) = EXf ,

υθj (f ) = Cov(Xf ,Xf ) and F
θj
yN1 ,yN2

(f ), j = 0, . . . ,N . Then the confidence interval of θ is
[θL, θU ] where

θL = min
{
θj : υθj (f )−1/2(Tn − p · Fθj

yN1 ,yN2
(f ) − mθj (f )

) ≤ 1.64
}

and

θU = max
{
θj : υθj (f )−1/2(Tn − p · Fθj

yN1 ,yN2
(f ) − mθj (f )

) ≤ 1.64
}
.

6. Concluding remarks

In this paper, we have considered a general Fisher matrix F where the (high-dimensional) popula-
tion covariance matrices �1 and �2 can be arbitrary and not necessarily equal. First the limiting
distribution of its eigenvalues has been found. Next and more importantly, we establish a CLT
for its linear spectral statistics. This CLT is unavoidable in many two-sample statistical problems
with high-dimensional data. Besides, this CLT extends and covers the CLT of Zheng [28] which
is related to standard Fisher matrices.

An important and unsolved issue on the developed theory is about the evaluation of the lim-
iting mean and covariance function in the CLT. These functions have a very complex structure
depending on non-trivial contour integrals. In the special case where the matrices �−1

2 �1 are
diagonal, we have proposed some simplifications though the obtained results are still complex.
In Section 4, we have devised some numerical procedures to approximate numerically these
asymptotic parameters. The advantage of these procedures is that they depend on the observed
data only. However, the accuracy of these procedure is currently unknown. A precise analysis of
these procedures or finding other more accurate procedures for the approximation are certainly a
valuable and challenging question in future research.

Appendix A: Two propositions about hmj(z) and hv1,v2(z1, z2)
when Tp’s are diagonal

Here, we develop an important special example where the matrices Tp’s are diagonal. In this
case, the explicit expressions for the limiting functions hmj (z) and hvj (z1, z2), j = 1,2 are given.
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Proposition A.1. In addition to the assumptions of Theorem 3.1, assume that the matrices Tp’s
are diagonal. Then, the limits (3.5) and (3.6) exist and equal to

hm2
(−m−1(z)

) = − 1

m3(z)

∫
t

(t + m0(z))
3

dH(t), (A.1)

hv2
(−m−1(z1),−m−1(z2)

)
(A.2)

= 1

m(z1)m(z2)

∫
1

(t + m0(z1))(t + m0(z2))
dH(t).

Consequently, the same conclusions as in Theorem 3.1 hold where the last term of EXf in (3.7)
is simplified to

βy

4πi

∮
C

f (z)

(
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)
d log

(
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)
(A.3)

and the last term of Cov(Xfi
,Xfj

) in (3.8) is simplified to

−βyy2

4π2

∮
C1

∮
C2

fi(z1)fj (z2)

[∫
t2 dH(t)

(t + m0(z1))2(t + m0(z2))2

]
dm0(z1) dm0(z2), (A.4)

where each of the contours C, C1 and C2 encloses the support of Uy, C1 and C2 are disjoint and
m0(z) = my2

(−m(z)).

Proposition A.2. In addition to the assumptions of Theorem 3.1, assume that the matrices Tp’s
are diagonal. Then (B.64) and (B.66) exist and equal to

hm1(z) = −
m2

0(z)

z2m(z)

∫
t2

(t+m0(z))
3 dH(t)

1 − y2
∮ m2

0(z)

(t+m0(z))
2 dH(t)

(A.5)

and

hv1(z1, z2) = 1

z1z2m(z1)m(z2)

∫
t2

(t + m0(z1))(t + m0(z2))
dH(t). (A.6)

Consequently, the same conclusions as in Theorem 3.1 hold where

−βxy1

2πi

∮
C

f (z)
z2m3(z) · hm1(z)

h2

y2
− y1

y2
· (1−∫ y2m0(z)

t+m0(z)
dH(t))2

1−∫ y2m2
0(z)

(t+m0(z))2
dH(t)

dz

(A.7)

= βxy1

2πi

∮
C

f (z)

[∫
t2

(t + m0(z))3
dH(t)

]
dm0(z)
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and

−βxy1

4π2
·
∮
C1

∮
C2

fi(z1)fj (z2)
∂2[z1z2m(z1)m(z2)hv1(z1, z2)]

∂z1 ∂z2
dz1 dz2

(A.8)

= −βxy1

4π2
·
∮
C1

∮
C2

fi(z1)fj (z2)

[∫
t2 dH(t)

(t + m0(z1))2(t + m0(z2))2

]
dm0(z1) dm0(z2).

Appendix B: Proofs

B.1. Proof of Theorem 2.1

Let

sn2(z) =
∫ ∞

0

1

t − z
dGn2(t), sy2(z) =

∫ ∞

0

1

t − z
dGy2(t),

be the Stieltjes transforms of the ESD Gn2(t) and LSD Gy2(t) of random matrix T∗
p,1/2S−1

2 ×
Tp,1/2, respectively. Let

my2(z) =
∫ ∞

0

t

1 − tz
dGy2(t), (B.1)

which is the Stieltjes transform of the image measure of Gy2 by the reciprocal transformation
λ �→ 1/λ on (0,∞). It is easily checked that the Stieltjes transforms are

my2(z) = −1

z
− 1

z2
sy2(1/z). (B.2)

Similarly, consider the image measure and the associated Stieltjes transform

mn2(z) = −1

z
− 1

z2
sn2(1/z). (B.3)

Let

my2
(z) = −1 − y2

z
+ y2my2(z), (B.4)

then by Theorem 2.1 of Zheng, Bai and Yao [30], we have

z = − 1

my2
(z)

+ y2

∫
dH(t)

t + my2
(z)

, (B.5)

where H(t) is the LSD of Tp . In fact, we have

my2
(z) = −1

z
− y2

z2
sy2(1/z) or −1

z
my2

(
1

z

)
= 1 + y2zsy2(z).
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By Silverstein and Choi [22], we have

z = − 1

m(z)
+ y1

∫
t dGy2(t)

1 + tm(z)
= − 1

m(z)
+ y1my2

(−m(z)
)
. (B.6)

So by (B.4) the above equation reduces to

z = − h2

m(z) · y2
+ y1

y2
my2

(−m(z)
)
, (B.7)

where h2 = y1 + y2 − y1y2. Write m0(z) = my2
(−m(z)) = 1−y2

m(z)
+ y2

∫ t dGy2 (t)

1+tm(z)
. Replacing z by

−m(z), equation (B.5) becomes

−m(z) = − 1

m0(z)
+ y2

∫
dH(t)

t + m0(z)
. (B.8)

Therefore, equation (B.7) reduces to

z = h2m0(z)

y2(−1 + y2
∫

m0(z) dH(t)
t+m0(z)

)
+ y1

y2
m0(z). (B.9)

The proof of Theorem 2.1 is then completed.

B.2. Uniqueness of the solution to equation (2.9)

Rewrite (2.9) as

h2

y2z − y1m0(z)
= − 1

m0(z)
+ y2

∫
dH(t)

t + m0(z)
, (B.10)

and denote m0(z) = mr(z) + imi(z), where mr(z) and mi(z) are real. Comparing the imaginary
parts of both sides of (B.10) and then dividing mi , we obtain

− h2(y2v − y1mi)

mi |y2z − y1m0|2 = 1

|m0|2 − y2

∫
dH(t)

|t + m0|2 . (B.11)

Noting the fact that mi < 0, we have

1

|m0|2 − y2

∫
dH(t)

|t + m0|2 >
h2y1

|y2z − y1m0|2 . (B.12)

Now suppose that m1 �= m2 are two roots to the equation (B.10) with negative imaginary parts.
Making difference of (B.10) with m1 and m2, we obtain

h2y1

(y2z − y1m1)(y2z − y1m2)
= 1

m1m2
− y2

∫
dH(t)

(t + m1)(t + m2)
. (B.13)



1150 S. Zheng, Z. Bai and J. Yao

Applying Cauchy–Schwarz to (B.13), then we obtain

∣∣∣∣ 1

m1m2
− y2

∫
dH(t)

(t + m1)(t + m2)

∣∣∣∣
≥ 1

|m1m2| −
(

y2
2

∫
dH(t)

|t + m1|2
∫

dH(t)

|t + m2|2
)1/2

≥
(

1

|m1|2 − y2

∫
dH(t)

|t + m1|2
)1/2( 1

|m2|2 − y2

∫
dH(t)

|t + m2|2
)1/2

>
h2y1

|(y2z − y1m1)(y2z − y1m2)| .

This contradicts the equation (B.13).
The proof of the uniqueness is done.

B.3. Some useful identities

Lemma B.1. Let m0(z) = my2
(−m(z)) where m(z) is the solution of (B.6), then we have the

following identities

1 − y1

∫
m2(z)x2 dGy2(x)

(1 + xm(z))2
= h2

y2
− y1

y2
· (1 − ∫ y2m0

t+m0
dH(t))2

1 − ∫ y2m
2
0

(t+m0)
2 dH(t)

, (B.14)

[
log

(
h2

y2
− y1

y2
· (1 − ∫ y2m0

t+m0
dH(t))2

1 − ∫ y2m
2
0

(t+m0)
2 dH(t)

)]′
=

−2y1
∫ m3(z)(z)x2 dGy2 (x)

(1+xm(z))3

[1 − y1
∫ m2(z)x2 dGy2 (x)

(1+xm(z))2 ]2
, (B.15)

(
h2

y2
− y1

y2
· (1 − ∫ y2m0

t+m0
dH(t))2

1 − ∫ y2m
2
0

(t+m0)
2 dH(t)

)′
=

−2y1
∫ m3(z)(z)x2 dGy2 (x)

(1+xm(z))3

1 − y1
∫ m2(z)x2 dGy2 (x)

(1+xm(z))2

, (B.16)

[
log

(
1 − y2

∫
m2

0 dH(t)

(t + m0)2

)]′
=

2m′(z)y2
∫ tm3

0 dH(t)

(t+m0)
3

(1 − y2
∫ m2

0 dH(t)

(t+m0)
2 )2

, (B.17)

m0(z) = 1

m(z)

(
1 − y2

m(z)
sy2

(
− 1

m(z)

))
, m′

0 = −m′m2
0

1 − y2
∫ m2

0 dH(t)

(t+m0)
2

, (B.18)

1 − y1

∫
(m(z))2x2 dGy2(x)

(1 + xm(z))2
= (m(z))2

m′(z)
, (B.19)
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(
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)′
= 2m′(z)

y2
∫ m3

0(z)t

(t+m0(z))
3 dH(t)

1 − y2
∫ m2

0(z) dH(t)

(t+m0(z))
2

, (B.20)

where m′
0(z) = d

dz
m0(z) and m′(z) = d

dz
m(z).

Proof. By (B.1), we have m′
y2

(z) = ∫ ∞
0

x2 dGy2 (x)

(1−xz)2 where ′ denotes the derivative with respect
to z. So by (B.4) we have∫

x2 dGy2(x)

(1 + xm(z))2
= m′

y2

(−m(z)
) = −1 − y2

y2
· 1

(m(z))2
+ 1

y2
· m′

y2

(−m(z)
)
, (B.21)

where m′
y2

(−m(z)) = d
dξ

my2
(ξ)|ξ=−m(z)

instead of d
dz

my2
(−m(z)). By (B.21), we have

1 − y1

∫
(m(z))2x2 dGy2(x)

(1 + xm(z))2
= h2

y2
− y1(m(z))2m′

y2
(−m(z))

y2
. (B.22)

Differentiating both sides of (B.5) and then replacing z by −m, we obtain

1 =
(

1

m2
0

− y2

∫
dH(t)

(t + m0)2

)
m′

y2
(−m). (B.23)

This equation, together with (B.8), (B.22) and (B.23) imply that

1 − y1

∫
m2(z)x2 dGy2(x)

(1 + xm(z))2
= h2

y2
− y1

y2
· (1 − ∫ y2m0

t+m0
dH(t))2

1 − ∫ y2m
2
0

(t+m0)
2 dH(t)

. (B.24)

Differentiating both sides of (B.7) with respect to z, we obtain

1 = h2

y2(m(z))2
m′(z) − y1

y2
m′

y2

(−m(z)
)
m′(z).

This implies that

m′(z) = y2(m(z))2

h2 − y1(m(z))2m′
y2

(−m(z))
,

or equivalently

y1
(
m(z)

)2
m′

y2

(−m(z)
) = h2 − y2(m(z))2

m′(z)
. (B.25)

So by (B.22) and (B.25), we have

1 − y1

∫
(m(z))2x2 dGy2(x)

(1 + xm(z))2
= (m(z))2

m′(z)
. (B.26)
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Differentiating both sides of (B.8), we have

m′
0 = −m′m2

0

1 − y2
∫ m2

0 dH(t)

(t+m0)
2

. (B.27)

So we have

(
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)′
= 2m′(z)

y2
∫ m3

0(z)t

(t+m0(z))
3 dH(t)

1 − y2
∫ m2

0(z) dH(t)

(t+m0(z))
2

.

So by (B.24) and (B.26), we obtain (B.15). By (B.27), we have the conclusion (B.17). By (B.2)
and (B.4), we have

m0(z) = 1

m(z)

(
1 − y2

m(z)
sy2

(
− 1

m(z)

))
.

The proof of the lemma is completed. �

In the sequel, for brevity, sy2(z) will be denoted as s(z) if no confusion would be possible.

B.4. Proof of Theorem 3.1

B.4.1. Deriving CLT of general Fisher matrix

Following the same techniques of truncation and normalization given in Bai and Silverstein [7]
(see lines -9 to -6 from the bottom of page 559), the assumptions can be simplified as the follow-
ing:

• |Xjk| < ηp
√

p, |Yjk| < ηp
√

p, for some ηp → 0, as p → ∞;
• EXjk = 0, EYjk = 0 and E|Xjk|2 = 1, E|Yjk|2 = 1;
• E|Xjk|4 = 1 + κ + βx + o(1) and E|Yjk|4 = 1 + κ + βy + o(1);
• For the complex case, EX2

jk = o(n−1
1 ) and EY 2

jk = o(n−1
2 ).

We have

n1
[
mn(z) − myn

(z)
] = n1

[
mn(z) − m{yn1 ,Gn2 }(z)

] + n1
[
m{yn1 ,Gn2 }(z) − myn

(z)
]
,

where m{yn1 ,Gn2 }(z) and myn
(z) are the unique roots with imaginary parts having the same signs

as that of z to the following equations, see equation (2.10),

z = − 1

m{yn1 ,Gn2 } + yn1 ·
∫

t dGn2(t)

1 + tm{yn1 ,Gn2 } and z = − 1

myn

+ yn1 ·
∫

t dGyn2
(t)

1 + tmyn

.

The proof follows two steps and we unify the real and complex cases with the indicator nota-
tion κ .
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Step 1. Consider the conditional distribution of

n1
[
mn(z) − m{yn1 ,Gn2 }(z)

]
(B.28)

given S2 = {all S2}. In the proof of Theorem 2.1, we have proved that Gn2 converges to Gy2 .
Using Lemma 1.1 of Bai and Silverstein [7], we conclude that the conditional distribution of

n1
[
mn(z) − m{yn1 ,Gn2 }(z)

] = p
[
mn(z) − m{yn1 ,Gn2 }(z)

]
given S2 converges to a Gaussian process M1(z) on the contour C enclosing the support [a, b]
of the LSD Uy of Fisher matrix. Moreover, its mean function equals

E
(
M1(z)|S2

) = (κ − 1)
y1

∫
m(z)3x2[1 + xm(z)]−3 dGy2(x)

[1 − y1
∫

m2(z)x2(1 + xm(z))−2 dGy2(x)]2

(B.29)

+ βx

y1z
2m3(z) · hm1(z)

[1 − y1
∫ x2m2(z)

{1+xm(z)}2 dGy2(x)]
,

where hm1(z) is the limit of

1

p

p∑
i=1

E
[
e′
i

{
S−1/2

2 T1/2
p

}∗D−1
1

{
S−1/2

2 T1/2
p

}
ei

× e′
i

{
S−1/2

2 T1/2
p

}∗D−1
1

(
m(z)

{
T1/2

p

}∗S−1
2 T1/2

p + Ip

){
S−1/2

2 T1/2
p

}
ei |S2

]
,

which is obtained through replacing S−1/2
2 by S−1/2

2 T1/2
p in (6.40) of Zheng [28]. The conditional

covariance function of the process M1(z) equals

Cov
(
M1(z1),M1(z2)|S2

)
= κ ·

(
m′(z1) · m′(z2)

(m(z1) − m(z2))2
− 1

(z1 − z2)2

)

− βxy1

4π2
·
∮
C1

∮
C2

fi(z1)fj (z2)
∂2[z1z2m(z1)m(z2)hv1(z1, z2)]

∂z1 ∂z2
dz1 dz2,

where hv1(z1, z2) is obtained through replacing S−1/2
2 by S−1/2

2 T1/2
p in (6.41) of Zheng [28].

It is remarkable that these limiting functions are independent of the conditioning S2, which
shows that the limiting process M1(z) is independent of the limit of the second part below.

Step 2. Now, we consider the limiting process of

n1
[
m{yn1 ,Gn2 }(z) − myn

(z)
] = p

[
m{yn1 ,Gn2 }(z) − myn(z)

]
. (B.30)

By (B.1), we have

z = − 1

myn

+ yn1

∫
t

1 + t · myn

dGyn2
(t) = − 1

myn

+ yn1 · myn2

(−myn
(z)

)
. (B.31)
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On the other hand, m{yn1 ,Gn2 } is the solution to the equation

z = − 1

m{yn1 ,Gn2 } + yn1

∫
t · dGn2(t)

1 + t · m{yn1 ,Gn2 }

and

z = − 1

m{yn1 ,Gn2 } + yn1

∫
t dGn2(t)

1 + t · m{yn1 ,Gn2 }
(B.32)

= − 1

m{yn1 ,Gn2 } + yn1

∫ {
t dGn2(t)

1 + tm{yn1 ,Gn2 } − t dGn2(t)

1 + tmyn

}
+ yn1

∫
t dGn2(t)

1 + tmyn

,

where ∫
t

1 + t · myn
(z)

dGn2(t) = mn2

(−myn
(z)

)
.

Taking the difference of (B.31) and (B.32) yields

0 = − 1

m{yn1 ,Gn2 } + 1

myn

yn1

∫ {
t dGn2(t)

1 + tm{yn1 ,Gn2 } − t dGn2(t)

1 + tmyn

}

+ yn1 ·
∫

t · dGn2(t)

1 + t · myn

− yn1 ·
∫

t

1 + t · myn

dGyn2
(t).

That is,

0 = m{yn1 ,Gn2 } − myn

myn
· m{yn1 ,Gn2 } − yn1

∫
(m{yn1 ,Gn2 } − myn

)t2 dGn2(t)

(1 + tm{yn1 ,Gn2 })(1 + tmyn
)

+ yn1

{
mn2(−myn

) − myn2
(−myn

)
}
.

Therefore, we obtain

n1 · [m{yn1 ,Gn2 }(z) − myn
(z)

]
= −yn1 · m{yn1 ,Gn2 }myn

· n1[mn2(−myn
) − myn2

(−myn
)]

1 − yn1 · ∫ myn ·m{yn1 ,Gn2 }
t2 dGn2 (t)

(1+tmyn )·(1+tm
{yn1 ,Gn2 }

)

(B.33)

= −m{yn1 ,Gn2 }myn
· p[mn2(−myn

) − myn2
(−myn

)]
1 − yn1 · ∫ myn ·m{yn1 ,Gn2 }

t2 dGn2 (t)

(1+tmyn )·(1+tm
{yn1 ,Gn2 }

)

.

We then consider the limiting process of

p
[
mn2

(−myn
(z)

) − myn2

(−myn
(z)

)] = − p

(myn
(z))2

[
sn2

( −1

myn
(z)

)
− syn2

( −1

myn
(z)

)]
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by (B.3). Noticing that for any z ∈C \R, myn
(z) → m(z), the limiting distribution of

− p

z2

[
sn2

( −1

myn
(z)

)
− syn2

( −1

myn
(z)

)]

is the same as that of

− p

(myn
(z))2

[
sn2

( −1

m(z)

)
− syn2

( −1

m(z)

)]
.

From now on, we use the notation g(z) = −1/m(z). By Theorem 2.2 of Zheng, Bai and
Yao [30], we conclude that

−pg2(z)
[
sn2

(
g(z)

) − syn2

(
g(z)

)]
,

converges weakly to a Gaussian process M2(·) on z ∈ C with the mean function

E
(
M2(z)

) = (κ − 1) ·
y2

∫ t[1+y2g(z)s(g(z))]3 dH(t)

[−tm(z)−1−y2g(z)s(g(z))]3

(1 − y2
∫ [1+y2g(z)s(g(z))]2 dH(t)

[−tm(z)−1−y2g(z)s(g(z))]2 )2
(B.34)

+ βyy2[1 + y2g(z)s(g(z))]3hm2(g(z))

1 − y2
∫ [1+y2g(z)s(g(z))]2 dH(t)

[−tm(z)−1−y2g(z)s(g(z))]2

, (B.35)

and covariance function Cov(M2(z1),M2(z2)) equaling

κg2(z1)g
2(z2)

( ∂{g(z1)[1+y2g(z1)s(g(z1))]}
∂{−1/m(z1)}

∂{g(z2)[1+y2g(z2)s(g(z2))]}
∂{−1/m(z1)}

{g(z1)[1 + y2g(z1)s(g(z1))] − g(z2)[1 + y2g(z2)s(g(z2))]}2

− 1

[g(z1) − g(z2)]2

)
(B.36)

+ βyy2g
2(z1)g

2(z2)
∂2[(1 + y2g(z1)s(g(z1)))(1 + y2g(z2)s(g(z2)))hv2(g(z1), g(z2))]

∂(−1/m(z1)) ∂(−1/m(z2))

for z1, z2 ∈ C, where H(t) is the LSD of Tp . Here we have used the fact that the limits hm2(z)

and hv2(z1, z2) in (3.5)–(3.6) exist whenever βy �= 0. Since

1 − yn1 ·
∫

myn
(z) · m{yn1 ,Gn2 }t2 dGn2(t)

(1 + tmyn
(z))(1 + tm{yn1 ,Gn2 })

−→ 1 − y1

∫
t2m2(z) dGy2(t)

[1 + tm(z)]2
,

almost surely, this limit equals m2

m′ by (B.26). Then by (B.33) we obtain that

n1
[
m{yn1 ,Gn2 }(z) − myn

(z)
]
,
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converges weakly to a Gaussian process

M3(z) = −m′(z)M2(z),

with the mean function E(M3(z)) = −m′(z)EM2(z) and covariance functions

Cov
(
M3(z1),M3(z2)

) = m′(z1)m
′(z2)Cov

(
M2(z1),M2(z2)

)
.

Since the limit process M1(z) of

n1 · [mn(z) − m{yn1 ,Gn2 }(z)
]

is independent of the ESD of Sn2 , we know that{
n1 · [mn(z) − m{yn1 ,Gn2 }(z)

]
, n1 · [m{yn1 ,Gn2 }(z) − myn

(z)
]}

converge to a two-dimensional Gaussian process (M1(z),M3(z)) with independent components.
Consequently, n1 · [mn(z) − myn

(z)] converges weakly to M4(z), a Gaussian process with mean
function

E
(
M4(z)

) = (κ − 1) · y1
∫

m3(z)x2[1 + xm(z)]−3 dGy2(x)

[1 − y1
∫

m2(z)x2(1 + xm(z))−2 dGy2(x)]2
(B.37)

+ βx · y1z
2m3(z) · hm1(z)

1 − y1
∫ x2m2(z)

{1+xm(z)}2 dGy2(x)
(B.38)

− (κ − 1)m′(z) ·
y2

∫ t[1+y2g(z)s(g(z))]3 dH(t)

[−tm(z)−1−y2g(z)s(g(z))]3

(1 − y2
∫ [1+y2g(z)s(g(z))]2 dH(t)

[−tm(z)−1−y2g(z)s(g(z))]2 )2
(B.39)

− βy · m′(z)y2[1 + y2g(z)s(g(z))]3hm2(g(z))

1 − y2
∫ [1+y2g(z)s(g(z))]2 dH(t)

[−tm(z)−1−y2g(z)s(g(z))]2

, (B.40)

and covariance function

Cov
(
M4(z1),M4(z2)

)
= κ ·

(
m′(z1) · m′(z2)

(m(z1) − m(z2))2
− 1

(z1 − z2)2

)
+ βxy1 · ∂2[z1z2m(z1)m(z2)hv1(z1, z2)]

∂z1 ∂z2

+ κg′(z1)g
′(z2)

∂{g(z1)[1+y2g(z1)s(g(z1))]}
∂{−1/m(z1)}

∂{g(z2)[1+y2g(z2)s(g(z2))]}
∂{−1/m(z1)}

{g(z1)[1 + y2g(z1)s(g(z1))] − g(z2)[1 + y2g(z2)s(g(z2))]}2

− κg′(z1)g
′(z2)

1

[g(z1) − g(z2)]2

+ βyy2g
′(z1)g

′(z2)
∂2[(1 + y2g(z1)s(g(z1)))(1 + y2g(z2)s(g(z2)))hv2(g(z1), g(z2))]

∂(−1/m(z1)) ∂(−1/m(z2))
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= −κ · 1

(z1 − z2)2
+ βxy1 · ∂2[z1z2m(z1)m(z2)hv1(z1, z2)]

∂z1 ∂z2
(B.41)

+ κg′(z1)g
′(z2)

∂{g(z1)[1+y2g(z1)s(g(z1))]}
∂{−1/m(z1)}

∂{g(z2)[1+y2g(z2)s(g(z2))]}
∂{−1/m(z1)}

{g(z1)[1 + y2g(z1)s(g(z1))] − g(z2)[1 + y2g(z2)s(g(z2))]}2
(B.42)

+ βyy2g
′(z1)g

′(z2)
(B.43)

× ∂2[(1 + y2g(z1)s(g(z1)))(1 + y2g(z2)s(g(z2)))hv2(g(z1), g(z2))]
∂(−1/m(z1)) ∂(−1/m(z2))

.

B.4.2. Simplifying the mean expressions (B.37) to (B.40) and the covariance expressions
(B.42)–(B.43)

Recall that m0(z) = my2
(−m(z)). By (B.15), we have

(B.37) =
(κ − 1) · y1

∫ m3(z)x2

[1+xm(z)]3 dGy2(x)

[1 − y1
∫ m2(z)x2

(1+xm(z))2 dGy2(x)]2
= −(κ − 1)

2

d log(h2

y2
− y1

y2
· (1−y2

∫ m0(z)

t+m0(z)
dH(t))2

1−y2
∫ m2

0(z)

(t+m0(z))2
dH(t)

)

dz
.

By (B.14), we have

(B.38) = βx

hm1(z)

[y1z2m3(z)]−1 · [1 − y1
∫ x2m2(z)

{1+xm(z)}2 dGy2(x)]
= βx

y1z
2m3(z) · hm1(z)

h2

y2
− y1

y2
· (1−∫ y2m0

t+m0
dH(t))2

1−∫ y2m2
0

(t+m0)2
dH(t)

.

By (B.17) and (B.18), we have

(B.39) = −
(κ − 1)m′(z) · y2

∫ t[1+y2g(z)s(g(z))]3 dH(t)

[−tm(z)−1−y2g(z)s(g(z))]3

(1 − y2
∫ [1+y2g(z)s(g(z))]2 dH(t)

[−tm(z)−1−y2g(z)s(g(z))]2 )2
= −κ − 1

2

d log(1 − y2
∫ m2

0(z) dH(t)

(t+m0(z))
2 )

dz
.

We have

(B.40) = −βym
′(z)y2[1 + y2g(z)s(g(z))]3hm2(g(z))

1 − y2
∫ [1+y2g(z)s(g(z))]2 dH(t)

[−tm(z)−1−y2g(z)s(g(z))]2

= −βym
′(z)

y2m
3(z)m3

0(z)hm2(g(z))

1 − y2
∫ m2

0(z)

(t+m0(z))
2 dH(t)

.

By (B.18) we have

(B.42) = κg′(z1)g
′(z2)

∂{g(z1)[1+y2g(z1)s(g(z1))]}
∂{−1/m(z1)}

∂{g(z2)[1+y2g(z2)s(g(z2))]}
∂{−1/m(z1)}

{g(z1)[1 + y2g(z1)s(g(z1))] − g(z2)[1 + y2g(z2)s(g(z2))]}2

= κ
1

(m0(z1) − m0(z2))2

∂m0(z1)

∂z1

∂m0(z2)

∂z2
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and

(B.43) = βyy2g
′(z1)g

′(z2)
∂2[m(z1)m0(z1)m(z2)m0(z2)hv2(g(z1), g(z2))]

∂(−1/m(z1)) ∂(−1/m(z2))
.

So we obtain

−1

2πi

∮
C

fi(z) · (B.37) dz

= κ − 1

4πi

∮
C

fi(z) d log

(
h2

y2
− y1

y2
· (1 − y2

∫
m0

t+m0
dH(t))2

1 − y2
∫ m2

0
(t+m0)

2 dH(t)

)
(B.44)

= −κ − 1

4πi

∮
C

f ′(z) log

(
h2

y2
− y1

y2
· (1 − y2

∫
m0(z)

t+m0(z)
dH(t))2

1 − y2
∫ m2

0(z)

(t+m0(z))
2 dH(t)

)
dz,

− 1

2πi

∮
C

fi(z) · (B.38)dz = − βx

2πi

∮
fi(z)

y1z
2m3(z) · hm1(z)

h2

y2
− y1

y2
· (1−∫ y2m0

t+m0
dH(t))2

1−∫ y2m2
0

(t+m0)2
dH(t)

dz, (B.45)

− 1

2πi

∮
C

fi(z) · (B.39)dz = κ − 1

4πi

∮
C

fi(z) d log

(
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)
(B.46)

− κ − 1

4πi

∮
C

f ′(z) log

(
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)
dz,

− 1

2πi

∮
C

fi(z) · (B.40)dz = βy

2πi
·
∮

fi(z)m
′(z)

y2m
3(z)m3

0(z)hm2(g(z))

1 − y2
∫ m2

0(z)

(t+m0(z))
2 dH(t)

dz, (B.47)

for the mean function and

− 1

4π2

∮
C1

∮
C2

fi(z1)fj (z2) · (B.41)dz

= −βxy1

4π2

∮ ∮
fi(z1)fj (z2)

∂2[z1z2m(z1)m(z2)hv1(z1, z2)]
∂z1 ∂z2

dz1 dz2 (B.48)

= −βxy1

4π2

∮ ∮
f ′

i (z1)f
′
j (z2) · [z1z2m(z1)m(z2) · hv1(z1, z2)

]
dz1 dz2,

− 1

4π2

∮
C1

∮
C2

fi(z1)fj (z2) · (B.42)dz

= − κ

4π2

∮
C1

∮
C2

fi(z1)fj (z2)

(m0(z1) − m0(z2))2
dm0(z1) dm0(z2) (B.49)



CLT for eigenvalue statistics of large Fisher matrices 1159

= − κ

4π2

∮
C1

∮
C2

f ′
i (z1)f

′
j (z2) log

(
m0(z1) − m0(z2)

)
dz1 dz2,

− 1

4π2

∮
C1

∮
C2

fi(z1)fj (z2) · (B.43)dz

(B.50)

= −βyy2

4π2

∮ ∮
fi(z1)fj (z2)

∂2[m(z1)m0(z1)m(z2)m0(z2)hv2(g(z1), g(z2))]
∂z1 ∂z2

dz1 dz2

for the covariance function where h2 = y1 + y2 − y1y2. The respective sums lead to the mean
and covariance functions of the theorem.

B.5. Proofs of Propositions A.1 and A.2

B.5.1. Some lemmas

Write ηj = 1√
n2

y·j and γ j = 1√
n1

S−1/2
2 Tp,1/2X·j , then

D1(z) =
n1∑

j=2

γ jγ
∗
j − zIp, D2(z) =

n2∑
j=1

ηjη
∗
j + zTp.

Let S1j = S1 − γ jγ
∗
j , S2j = S2 − ηjη

∗
j , D1j (z) = D1(z) − γ jγ

∗
j , D2j (z) = D2(z) − ηjη

∗
j ,

D1jk(z) = D1j (z)−γ kγ
∗
k , and D2jk(z) = D2j (z)−ηkη

∗
k . Moreover, Let β1j (z) = 1

1+γ ∗
j D−1

1j (z)γ j

,

β2j (z) = 1
1+η∗

j D−1
2j (z)ηj

, β1j (k)(z) = 1
1+γ ∗

j D−1
1jk(z)γ j

and β2j (k)(z) = 1
1+η∗

j D−1
2jk(z)ηj

.

Lemma B.2. Under the conditions of Theorem 3.1, in hm1 and hv1, the matrix D−1
1 (z) can be

replaced by −z−1{m(z)S−1/2
2 TpS−1/2

2 + Ip}−1.

Proof. Let K = − zm(z)(n1−1)

n1
S−1/2

2 TpS−1/2
2 and let ei denote the ith vector of the canonical

basis of C
p . For any non-random M (p × p) with bound operation norm (M will be Ip and

m(z)T∗
p,1/2S−1

2 Tp,1/2 + Ip in application), we have (K − zIp)−1 − D−1
1 = ∑n1

j=2 dj where dj =
d1
j + d2

j + d3
j and

d1
j = (K − zIp)−1γ jγ

∗
j D−1

1j

(
βj + zm(z)

)
,

d2
j = −zm(z)(K − zIp)−1

(
γ jγ

∗
j − 1

n1
S−1/2

2 TpS−1/2
2

)
D−1

1j ,

d3
j = 1

n1 − 1
(K − zIp)−1K

(
D−1

1j − D−1
1

)
.
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Then, we have

E

∣∣∣∣∣
n1∑

j=2

e′
iT

∗
p,1/2S−1/2

2 d1
j MS−1/2

2 Tp,1/2ei

∣∣∣∣∣
2

(B.51)

≤ E

∣∣∣∣∣
n1∑

j=2

e′
iT

∗
p,1/2S−1/2

2 (K − zIp)−1γ jγ
∗
j D−1

1j

(
βj + zm(z)

)
MS−1/2

2 Tp,1/2ei

∣∣∣∣∣
2

= o(1)

because, with S11 = ∑n1
j=2 γ jγ

∗
j ,

E
n1∑

j=2

∣∣e′
iT

∗
p,1/2S−1/2

2 (K − zIp)−1γ j

∣∣2

= Ee′
iT

∗
p,1/2S−1/2

2 (K − zIp)−1∗S11(K − z̄Ip)−1S−1/2
2 Tp,1/2ei

≤ Kv−2
∣∣e′

i

(
T∗

p,1/2S−1
2 Tp,1/2

)2ei

∣∣ = O(1)

and since βj + zm(z) = op(1) and by the control convergence theorem, we have

E
n1∑

j=2

∣∣γ ∗
j D−1

1j MS−1/2
2 Tp,1/2ei

(
βj + zm(z)

)∣∣2

= E
n1∑

j=2

e′
iT

∗
p,1/2S−1/2

2 M∗D−1∗
1j γ jγ

∗
j D−1

1j MS−1/2
2 Tp,1/2ei × op(1)

= v−2(Ee′
iT

∗
p,1/2S−1/2

2 M∗S11MS−1/2
2 Tp,1/2ei

) × o(1) = o(1).

Furthermore, we have

E
n1∑

j=2

∣∣e′
iT

∗
p,1/2S−1/2

2 d2
j MS−1/2

2 Tp,1/2ei

∣∣2

=
n1∑

j=2

E
∣∣e′

iT
∗
p,1/2S−1/2

2 (K − zIp)−1(γ jγ
∗
j − n−1

1 S−1/2
2 TpS−1/2

2

)
D−1

1j MS−1/2
2 Tp,1/2ei

∣∣2

(B.52)

≤ K

n2
1

n1∑
j=2

Ee′
iT

∗
p,1/2S−1/2

2 (K − zIp)−1S−1/2
2 TpS−1/2

2

(
K∗ − z̄I

)−1S−1/2
2 Tp,1/2ei

× e′
iT

∗
p,1/2S−1/2

2 M∗D−1∗
1j S−1/2

2 TpS−1/2
2 D−1

1j MS−1/2
2 Tp,1/2ei = O

(
n−1

1

)
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and ∣∣∣∣∣
n1∑

j1 �=j2

Ee′
iT

∗
p,1/2S−1/2

2 d2
j1

MS−1/2
2 Tp,1/2eie′

iT
∗
p,1/2S−1/2

2 M∗d2∗
j2

S−1/2
2 Tp,1/2ei

∣∣∣∣∣
=

∣∣∣∣∣
n1∑

j1 �=j2

Ee′
iT

∗
p,1/2S−1/2

2 (K − zIp)−1
(

γ j1
γ ∗

j1
− 1

n1
S−1/2

2 TpS−1/2
2

)
D−1

1j1j2
γ j2

(B.53)
× γ ∗

j2
D−1

1j1j2
β1j2(j1)MS−1/2

2 Tp,1/2eie′
iT

∗
p,1/2S−1/2

2 M∗β1j1(j2)D
−1
1j1j2

γ j1

× γ ∗
j1

D−1
1j1j2

(
γ j2

γ ∗
j2

− 1

n1
S−1/2

2 TpS−1/2
2

)
S−1/2

2 Tp,1/2ei

∣∣∣∣∣ · ∣∣zm(z)
∣∣2 = O

(
n−1

1

)
because

E

∣∣∣∣e′
iT

∗
p,1/2S−1/2

2 (K − zIp)−1
(

γ j1
γ ∗

j1
− 1

n1
S−1/2

2 TpS−1/2
2

)
D−1

1j1j2

× γ j2
γ ∗

j2
D−1

1j1j2
β1j2(j1)MS−1/2

2 Tp,1/2ei

∣∣∣∣2

≤ K

n2
1

E
∥∥e′

iT
∗
p,1/2S−1/2

2 (K − zIp)−1S−1/2
2 Tp,1/2

∥∥2

× ∥∥T∗
p,1/2S−1/2

2 D−1
1j1j2

γ j2
γ ∗

j2
D−1

1j1j2
β1j2(j1)MS−1/2

2 Tp,1/2ei

∥∥2

≤ K

n2
1

E
∥∥T∗

p,1/2S−1/2
2 D−1

1j1j2
γ j2

γ ∗
j2

D−1
1j1j2

β1j2(j1)MS−1/2
2 Tp,1/2ei

∥∥2

≤ K

n4
1

E tr
(
T∗

p,1/2S−1/2
2 D−1

1j1j2
S−1/2

2 TpS−1/2
2 D−1/2∗

1j1j2
S−1/2

2 Tp,1/2
) = O

(
n−3

1

)
.

The two estimates above imply that

n1∑
j=2

e′
iT

∗
p,1/2S−1/2

2 d2
j MS−1/2

2 Tp,1/2ei = Op

(
n

−1/2
1

)
. (B.54)

We can similarly prove that

E

∣∣∣∣∣
n1∑

j=2

e′
iT

∗
p,1/2S−1/2

2 d3
j MS−1/2

2 Tp,1/2ei

∣∣∣∣∣
2

≤ 1

n2
1

E

∣∣∣∣∣
n1∑

j=2

e′
iT

∗
p,1/2S−1/2

2 (K − zIp)−1KD−1
1j γ jγ

∗
j D−1

1j MS−1/2
2 Tp,1/2eiβ1j

∣∣∣∣∣
2

(B.55)

= O
(
n−2

1

)
.
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Therefore, the matrix D−1
1 (z) can be replaced by

(K − zIp)−1 = −z−1(m(z)∗S−1/2
2 TpS−1/2

2 + Ip

)−1

in hm1 and hv1.
The proof is completed. �

Define mI and mT as follows

mI(−z) =
∫

1
1

1+y2mI(−z)
+ zt

dH(t), mT(−z) =
∫

t

1
1+y2mI(−z)

+ zt
dH(t). (B.56)

Lemma B.3. For any �(z) �= 0, the equation (B.56) has a unique solution mM(−z) such that
�(mM(−z))�(z) < 0 where M = I or M = T.

Proof. We only need to prove the lemma for M = I. Without loss of generality, assume that
�(z) = v > 0. At first, comparing the imaginary parts of both sides, we obtain

mI2(−z) =
∫ −tv + y2mI2(−z)

|1+y2mI (−z)|2
|tz + 1

1+y2mI (−z)
|2 dH(t) <

∫ y2mI2(−z)

|1+y2mI (−z)|2
|tz + 1

1+y2mI (−z)
|2 dH(t),

where mI2(−z) < 0 is the imaginary part of mI (−z). Therefore, we have

∫ y2
|1+y2mI (−z)|2

|tz + 1
1+y2mI (−z)

|2 dH(t) < 1. (B.57)

Suppose that the equation (B.56) has two solutions m1 �= m2 with �(mk) < 0, k = 1,2. Then
making difference of (B.56) and dividing both sides by m1 − m2, we obtain

1 =
∫ y2

(1+y2m1)(1+y2m2)

(tz + 1
1+y2m1

)(tz + 1
1+y2m2

)
dH(t).

Using Cauchy–Schwarz to the above equation and then using (B.57), we obtain a contradiction.
The proof of the lemma is completed. �

Lemma B.4. Define my2
(z) = y2mT (z) − 1−y2

z
. Then, we have

1

1 + y2mI (z)
= −y2zmT (z) + (1 − y2) = −zmy2

(z). (B.58)

Moreover, my2
(z) is the same as that defined in Theorem 2.1.
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Proof. By the second equation of (B.56), we obtain

mT (−z) =
∫

t

tz + 1
1+y2mI (−z)

dH(t)

= 1

z
− 1

z(1 + y2mI (−z))

∫
1

tz + 1
1+y2mI (−z)

dH(t) = 1

z
− 1

z

mI (−z)

1 + y2mI (−z)
.

Then we have 1
1+y2mI (−z)

= y2zmT (−z) + (1 − y2). Thus, we obtain

1

1 + y2mI (z)
= −y2zmT (z) + (1 − y2) = −zmy2

(z).

This implies (B.58). Moreover, replacing (B.58) to (B.56), we obtain

z = − 1

my2
(z)

+ y2

∫
dH(t)

t + my2
(z)

,

where the equation has the unique solution. Then my2
(z) is the same as that defined in Theo-

rem 2.1.
The proof is completed.

Lemma B.5. Defining K̃(z) = Ip
1+y2mI(−z)

, then we have

(
K̃(z) + zTp

)−1 − (S2 + zTp)−1 =
n2∑

j=1

d̃j (z) =
n2∑

j=1

d̆j (z), (B.59)

where d̃j (z) = d̃1
j (z) + d̃2

j (z) + d̃3
j (z), and by symmetry, d̆j (z) = d̆1

j (z) + d̆2
j (z) + d̆3

j (z)

d̃1
j (z) = (

K̃(z) + zTp

)−1
ηjη

∗
j D−1

2j (z)

(
β2j (z) − 1

1 + y2mI(−z)

)
,

d̃2
j (z) = 1

1 + y2mI(−z)

(
K̃(z) + zTp

)−1
(

ηjη
∗
j − 1

n2
Ip

)
D−1

2j (z),

d̃3
j (z) = n−1

2

(
K̃(z) + zTp

)−1K̃(z)
(
D−1

2j (z) − D−1
2 (z)

)
and

d̆1
j (z) = D−1

2j (z)ηjη
∗
j

(
K̃(z) + zTp

)−1
(

β2j (z) − 1

1 + y2mI(−z)

)
,

d̆2
j (z) = 1

1 + y2mI(−z)
D−1

2j (z)

(
ηjη

∗
j − 1

n2
Ip

)(
K̃(z) + zTp

)−1
,

d̆3
j (z) = n−1

2

(
D−1

2j (z) − D−1
2 (z)

)
K̃(z)

(
K̃(z) + zTp

)−1
.
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Assuming that Tp’s are diagonal, we have

n2∑
j=1

e′
iT

∗
p,1/2d̃

k
j (z)Tp,1/2ei → 0, a.s. k = 1,2,3, (B.60)

for any random matrix A with bounded non-random norm

n2∑
j=1

e′
iT

∗
p,1/2ATpd̃k

j (z)Tp,1/2ei → 0, a.s. k = 1,3, (B.61)

and for any non-random nonnegative definite matrix B with bounded norm

n2∑
j=1

e′
iT

∗
p,1/2BTpd̃2

j (z)Tp,1/2ei → 0, a.s. (B.62)

Proof. We have D−1
2 (z) = (zTp + S2)

−1 and K̃(z) = 1
1+y2mI(−z)

Ip . We write

D2(z) − (
zTp + K̃(z)

) =
n2∑

j=1

ηjη
∗
j − K̃(z).

Multiplying by (zTp + K̃(z))−1 on the left, D−1
2 on the right and using

η∗
j D−1

2 (z) = η∗
j D−1

2j (z)β2j ,

we obtain the first equation of (B.59). And similarly we get the second equation of (B.59) by
multiplying (zTp + K̃(z))−1 on the right, and D−1

2 on the left. At first, we derive a limit of
1
p

tr(D−1
2 (z)M), where M is a non-random p×p n.n.d. matrix of bounded operation norm and =

Ip or Tp in accordance of application. For fixed z = x + iv with v �= 0 and any n2, we show
that 1

p
tr(D−1

2 M) is bounded. In fact, let tj and xj denote the eigenvalues and eigenvectors of

S−1/2
2 TpS−1/2

2 and u2
j = x∗

j S−1/2
2 MS−1/2

2 xj , we have

∣∣∣∣ 1

p
tr
(
D−1

2 M
)∣∣∣∣ =

∣∣∣∣∣ 1

p

p∑
j=1

|uj |2
ztj + 1

∣∣∣∣∣
≤ 1

|z|
1

p

p∑
j=1

|u2
j |

|�(tj + z−1)| ≤ |z|
|v| tr

(
S−1

2 M
) ≤ K < ∞,

for some constant K .
Therefore, for any subsequence {n′

2} of {n2}, there is a convergent subsequence {n′′
2} such that

1
p

tr(D−1
2 Tp) converges to some limit my2(−z) when n2 runs to infinity along {n′′

2}. Thus, to
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show that 1
p

tr(D−1
2 M) converges to mM(−z), we only need to derive an equation that mM(−z)

satisfies and that the equation has a unique solution with �(mM(−z))�(−z) < 0. Without loss of
generality, we assume that 1

p
tr(D−1

2 M) → mM(−z) as n2 → ∞ subject to p/n2 → y2 ∈ (0,1).

Therefore, we have β2j (z) → 1
1+y2mI(−z)

.
Similar to the proofs of (B.51)–(B.55), one can prove that for any i = 1,2,3,

1

p

n2∑
j=1

tr
(
d̃ i
j M

) = oa.s.(1).

Therefore, from (B.59), one concludes that

mI(−z) =
∫

1
1

1+y2mI(−z)
+ zt

dH(t), mT(−z) =
∫

t

1
1+y2mI(−z)

+ zt
dH(t). (B.63)

By Lemma B.3, the equation above has a unique solution of mI(−z) subject to

�(
mI(−z)

)�(−z) < 0.

Hence, we have proved that 1
p

tr(D−1
2 M) → mM(−z) with probability 1.

Furthermore, from (B.59), similar to the proofs of (B.51)–(B.55), one can prove that for k =
1,2,3,

n2∑
j=1

e′
iT

∗
p,1/2d̃

k
j (z)Tp,1/2ei → 0, a.s.

and for any random matrix A with bounded non-random norm k = 1,3,

n2∑
j=1

e′
iT

∗
p,1/2ATpd̃k

j (z)Tp,1/2ei → 0, a.s.

and for any non-random and matrix B with bounded norm

n2∑
j=1

e′
iT

∗
p,1/2BTpd̃2

j (z)Tp,1/2ei → 0, a.s.

The proof is completed. �

B.5.2. Proof of Proposition A.1

By Lemmas B.4–B.5, we have

−m(z)
1

p

p∑
j=1

e′
j

(
m(z)Tp + S2k

)−1ej · e′
j

(
m(z)Tp + S2k

)−1Tp

(
Tp + my2

(−m(z)
)
Ip

)−1ej

= −m3(z)

∫
t

(t + my2
(−m(z)))3

dH(t) + oa.s.(1)
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and

1

p

p∑
j=1

e′
j

(
m(z1)Tp + S2i

)−1ej · e′
j

(
m(z2)Tp − S2i

)−1ej

= m(z1)m(z2)

∫
1

(t + my2
(m(z1)))(t + my2

(−m(z2)))
dH(t) + oa.s.(1).

That is, we have proved that

hm2
(
g(z)

) = hm2
(−m−1(z)

) = − 1

m3(z)

∫
t

(t + m0(z))3
dH(t),

hv2
(
g(z1), g(z2)

) = hv2
(−m−1(z1),m

−1(z2)
)

= 1

m(z1)m(z2)

∫
1

(t + m0(z1))(t + m0(z2))
dH(t).

Then we obtain

(B.40) = −βym
′(z)y2[1 + y2g(z)s(g(z))]3hm2(g(z))

1 − y2
∫ [1+y2g(z)s(g(z))]2 dH(t)

[−tm(z)−1−y2g(z)s(g(z))]2

= βym
′(z)y2[1 + y2g(z)s(g(z))]3

1 − y2
∫ [1+y2g(z)s(g(z))]2 dH(t)

[−tm(z)−1−y2g(z)s(g(z))]2

1

m3(z)

×
∫

t

(t + m0(z))3
dH(t)

= −βy · m′(z)
y2

∫ tm3
0(z)

(t+m0(z))
3 dH(t)

1 − y2
∫ m2

0(z) dH(t)

(t+m0(z))
2

= βx

2

(
1 − y2

∫
m2

0 dH(t)

(t + m0)2

)[
log

(
1 − y2

∫
m2

0 dH(t)

(t + m0)2

)]′

and

(B.43) = βyy2
∂2[(1 + y2g(z1)s(g(z1)))(1 + y2g(z2)s(g(z2)))hv2(g(z1), g(z2))]

∂z1 ∂z2

= βyy2
∂2

∫
m0(z1)m0(z2)

(t+m0(z1))(t+m0(z2))
dH(t)

∂z1 ∂z2

= βyy2

∫
t2 dH(t)

(t + m0(z1))2(t + m0(z2))2

∂2m0(z1)m0(z2)

∂z1 ∂z2
.
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We have

(B.47) = − 1

2πi

∮
f (z) · (B.40)dz

= βy

4πi

∮
f (z)

(
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)
d log

(
1 − y2

∫
m2

0 dH(t)

(t + m0)2

)

and

(B.50) = − 1

4π2

∮ ∮
fi(z1)fj (z2) · (B.43)dz1 dz2

= −βyy2

4π2

∮ ∮
fi(z1)fj (z2)

[∫
t2 dH(t)

(t + m0(z1))2(t + m0(z2))2

]
dm0(z1) dm0(z2).

B.5.3. Proof of Proposition A.2

hm1 and hv1 are the limits of

1

p

p∑
i=1

E
[
e′
iT

∗
p,1/2S−1/2

2 D−1
1 S−1/2

2 Tp,1/2ei

(B.64)
× e′

iT
∗
p,1/2S−1/2

2 D−1
1

(
m(z)S−1/2

2 TpS−1/2
2 + Ip

)−1S−1/2
2 Tp,1/2ei |S2

]
and

1

n1p

n1∑
j=1

p∑
i=1

e′
iT

∗
p,1/2S−1/2

2

[
Ej D−1

1j (z1)
]
S−1/2

2 Tp,1/2ei

(B.65)
× e′

iT
∗
p,1/2S−1/2

2

[
Ej D−1

1j (z2)
]
S−1/2

2 Tp,1/2ei .

By Lemmas B.2 and B.5, we have

hv1(z1, z2) = 1

z1z2
lim

1

p

p∑
i=1

e′
iT

∗
p,1/2

(
m(z1)Tp + S2

)−1Tp,1/2ei

× e′
iT

∗
p,1/2

(
m(z2)Tp + S2

)−1Tp,1/2ei

= 1

z1z2m(z1)m(z2)

×
∫

t2

(m0(z1) + t)(m0(z2) + t)
dH(t).
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By Lemma B.2, (B.64) reduces to

hm1 = lim
1

p

p∑
i=1

1

z2
e′
iT

∗
p,1/2(mTp + S2)

−1Tp,1/2ei

× e′
iT

∗
p,1/2(mTp + S2)

−1S2(mTp + S2)
−1Tp,1/2ei

= lim
1

p

p∑
i=1

[
1

z2

(
e′
iT

∗
p,1/2

(
m(z)Tp + S2

)−1Tp,1/2ei

)2 (B.66)

− m(z)

z2
e′
iT

∗
p,1/2

(
m(z)Tp + S2

)−1Tp,1/2ei

× e′
iT

∗
p,1/2

(
m(z)Tp + S2

)−1Tp

(
m(z)Tp + S2

)−1Tp,1/2ei

]
.

In order to obtain the limit hm1(z), we first prove

∑
j1 �=j2

e′
iT

∗
p,1/2d̆

2
j1

(
m(z)

)
Tpd̃2

j2

(
m(z)

)
Tp,1/2ei = op(1). (B.67)

Substituting the expressions of d̆2
j and d̃2

j into the left-hand side (LHS) of (B.67), we have

LHS of (B.67) =
∑

j1 �=j2

m(z)2m2
0(z)e

′
iT

∗
p,1/2D−1

2j1

(
ηj1

η∗
j1

− 1

n2
I
)(

m(z)Tp + K̃
)−2Tp

×
(

ηj2
η∗

j2
− 1

n2
Ip

)
D−1

2j2
Tp,1/2ei .

Then, (B.67) is equivalent to

∑
j1 �=j2

e′
iT

∗
p,1/2D−1

2j1

(
ηj1

η∗
j1

− 1

n2
I
)(

m(z)Tp + K̃
)−2Tp

(
ηj2

η∗
j2

− 1

n2
Ip

)
D−1

2j2
Tp,1/2ei

(B.68)
= op(1).

Define α = Tp,1/2ei , B = (m(z)Tp + K̃)−2Tp , D2j1j2 = Dj1 − ηj2
η∗

j2
and β2j1(j2) =

1
1+η∗

j1
D−1

2j1j2
ηj1

. Noting that β2j1(j2) = m(z)m0(z) + Op(n−1
2 ), we have for any given j1

α∗D−1
2j1j2

ηj2
η∗

j2
D−1

2j1j2

(
ηj1

ηj1
− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

ηj1
η∗

j1
D−1

2j1j2
αβ2j1(j2)β2j2(j1)

(B.69)
= Op

(
n

−5/2
2

)
,
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which follows from the easily shown facts that α∗ηj = Op(n
−1/2
2 ), η∗

j1
D−1

2j1j2
α = Op(n−1

2 ), and

η∗
j1

Bηj2
= Op(n

−1/2
2 ). From (B.69), we obtain that

∑
j1 �=j2

α∗(D−1
2j1

− D−1
2j1j2

)(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)(

D−1
2j2

− D−1
2j1j2

)
α

(B.70)
= Op

(
n−1/2).

Furthermore, we have

α∗D−1
2j1j2

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

ηj1
η∗

j1
D−1

2j1j2
αβ2j1(j2)

= α∗D−1
2j1j2

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

ηj1
η∗

j1
D−1

2j1j2
αm(z)m0(z) + Op

(
n

−5/2
2

)
= Op

(
n−2

2

)
and by similarly defined D2j1j2j3 = D2j1j2 − ηj3

η∗
j3

,

E

∣∣∣∣ ∑
j1 �=j2

α∗D−1
2j1j2

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

ηj1
η∗

j1
D−1

2j1j2
α

∣∣∣∣2

=
∑

j1 �=j2
j3 �=j4

Eα∗D−1
2j1j2

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

ηj1
η∗

j1
D−1

2j1j2
α

× α∗D−1∗
2j3j4

ηj3
η∗

j3
D−1∗

2j3j4

(
ηj4

η∗
j4

− 1

n2
I
)

B∗
(

ηj3
η∗

j3
− 1

n2
I
)

D−1∗
2j3j4

D−1∗
2j3j4

α

=
∑

j1,j2,j3,j4
disctinct

Eα∗D−1
2j1j2

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

ηj1
η∗

j1
D−1

2j1j2
α

× α∗D−1∗
2j3j4

ηj3
η∗

j3
D−1∗

2j3j4

(
ηj4

η∗
j4

− 1

n2
I
)

B∗
(

ηj3
η∗

j3
− 1

n2
I
)

D−1∗
2j3j4

α

=
∑

j1,j2,j3,j4
disctinct

Eα∗D−1
2j1j2

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

ηj1
η∗

j1
D−1

2j1j2
α

× α∗D−1∗
2j2j3j4

ηj3
η∗

j3
D−1∗

2j3j4

(
ηj4

η∗
j4

− 1

n2
I
)

B∗
(

ηj3
η∗

j3
− 1

n2
I
)

D−1∗
2j3j4

α + O
(
n−1/2)

= O
(
n−1/2).
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Finally, noting that

E

∣∣∣∣α∗D−1
2j1j2

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

α

∣∣∣∣2

= Op

(
n−3)

we obtain

E

∣∣∣∣ ∑
j1 �=j2

α∗D−1
2j1j2

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

α

∣∣∣∣2

(B.71)
= III1 + 4III2 + III3,

where

III1 =
∑

j1 �=j2

E|α∗D−1
2j1j2

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

α|2 = O(n
−1
2 ),

III2 =
∑

j1,j2,j3
distinct

Eα∗D−1
2j1j2

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

α

× α∗D−1∗
2j1j3

(
ηj1

η∗
j1

− 1

n2
I
)

B∗
(

ηj3
η∗

j3
− 1

n2
I
)

D−1
2j1j3

α

=
∑

j1,j2,j3
distinct

Eα∗D−1
2j1j2j3

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

α

× α∗D−1∗
2j1j3

(
ηj1

η∗
j1

− 1

n2
I
)

B∗
(

ηj3
η∗

j3
− 1

n2
I
)

D−1
2j1j3

α + O
(
n

−1/2
2

)
= O

(
n

−1/2
2

)
,

and

III3 =
∑

j1,j2,j3,j4
distinct

Eα∗D−1
2j1j2

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

α

× α∗D−1∗
2j3j4

(
ηj3

η∗
j3

− 1

n2
I
)

B∗
(

ηj4
η∗

j4
− 1

n2
I
)

D−1
2j3j4

α

=
∑

j1,j2,j3,j4
distinct

E

(
α∗D−1

2j1j2

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

α

− α∗D−1
2j1j2j3

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2j3

α

)
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×
(

α∗D−1∗
2j3j4

(
ηj3

η∗
j3

− 1

n2
I
)

B∗
(

ηj4
η∗

j4
− 1

n2
I
)

D−1
2j3j4

α

− α∗D−1∗
2j1j3j4

(
ηj3

η∗
j3

− 1

n2
I
)

B∗
(

ηj4
η∗

j4
− 1

n2
I
)

D−1
2j1j3j4

α

)

= m2(z)m2
0(z)

∑
j1,j2,j3,j4

distinct

E

(
α∗D−1

2j1j2j3
ηj3

η∗
j3

D−1
2j1j2j3

(
ηj1

η∗
j1

− 1

n2
I
)

× B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2

α

+ α∗D−1
2j1j2

(
ηj1

η∗
j1

− 1

n2
I
)

B
(

ηj2
η∗

j2
− 1

n2
I
)

D−1
2j1j2j3

ηj3
η∗

j3
D−1

2j1j2j3
α

)

×
(

α∗D−1∗
2j1j3j4

ηj1
η∗

j1
D−1∗

2j1j3j4

(
ηj3

η∗
j3

− 1

n2
I
)

B∗
(

ηj4
η∗

j4
− 1

n2
I
)

D−1
2j3j4

α

+ α∗D−1∗
2j3j4

(
ηj3

η∗
j3

− 1

n2
I
)

B∗
(

ηj4
η∗

j4
− 1

n2
I
)

D−1
2j1j3j4

ηj1
η∗

j1
D−1∗

2j1j3j4
α

)
+ O

(
n

−1/2
2

)
= O

(
n

−1/2
2

)
.

In the derivation above, we have used the fact that once we change a D−1 with one more subscript,
the order of the error will increase O(n

−1/2
2 ). Finally, when all D−1 factors have been changed

to D−1
2j1j2j3j4

, the expectation is zero.
Then, we begin to derive the limit hm1. By (B.66), (B.60), (B.61) and Lemma B.4, we ob-

tain

hm1(z) = lim
1

p

p∑
i=1

[
1

z2

(
e∗
i T∗

p,1/2

(
m(z)Tp + S2

)−1Tp,1/2ei

)2

− m(z)

z2
e∗
i T∗

p,1/2

(
m(z)Tp + S2

)−1Tp,1/2ei

× e∗
i T∗

p,1/2

(
m(z)Tp + S2

)−1Tp

(
m(z)Tp + S2

)−1Tp,1/2ei

]

= lim
1

p

p∑
i=1

[
1

z2

(
e∗
i T∗

p,1/2

{
K̃(m) + mTp

}−1Tp,1/2ei

)2

− m(z)

z2
e∗
i T∗

p,1/2

{
K̃(m) + mTp

}−1Tp,1/2ei

× e∗
i T∗

p,1/2D−1(m)Tp

{
K̃(m) + mTp

}−1Tp,1/2ei

]
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− m(z)

pz2
lim

p∑
i=1

e∗
i T∗

p,1/2D−1
2

(
m(z)

)
Tp,1/2ei

×
n2∑

j=1

e∗
i T∗

p,1/2D−1
2

(
m(z)

)
Tpd̃2

j

(
m(z)

)
Tp,1/2ei

= lim
1

p

p∑
i=1

[
1

z2

(
e∗
i T∗

p,1/2

{
K̃(m) + mTp

}−1Tp,1/2ei

)2

− m(z)

z2
e∗
i T∗

p,1/2

{
K̃(m) + mTp

}−1Tp,1/2ei

× e∗
i T∗

p,1/2

{
K̃(m) + mTp

}−1Tp

{
K̃(m) + mTp

}−1Tp,1/2ei

]

− m(z)

pz2
lim

p∑
i=1

e∗
i T∗

p,1/2D−1
2

(
m(z)

)
Tp,1/2ei

×
n2∑

j1,j2=1

e∗
i T∗

p,1/2d̆
2
j1

(
m(z)

)
Tpd̃2

j2

(
m(z)

)
Tp,1/2ei

= m0(z)

z2m2(z)

∫
t2 dH(t)

(t + m0(z))3

− m(z)

pz2
lim

p∑
i=1

e∗
i T∗

p,1/2D−1
2

(
m(z)

)
Tp,1/2ei

×
n2∑

j1,j2=1

e∗
i T∗

p,1/2d̆
2
j1

(
m(z)

)
Tpd̃2

j2

(
m(z)

)
Tp,1/2ei

= m0(z)

z2m2(z)

∫
t2 dH(t)

(t + m0(z))3
− m(z)

pz2
lim

p∑
i=1

e∗
i T∗

p,1/2D−1
2

(
m(z)

)
Tp,1/2ei

× m2(z)m2
0(z)

n2∑
j=1

η∗
j

(
K̃

(
m(z)

) + m(z)Tp

)−1Tp

(
K̃

(
m(z)

) + m(z)Tp

)−1
ηj

× e∗
i T∗

p,1/2D−1
2j

(
m(z)

)
ηjη

∗
j D−1

2j

(
m(z)

)
Tp,1/2ei

= m0(z)

z2m2(z)

∫
t2 dH(t)

(t + m0(z))3

− m2(z)m2
0(z)

y2m(z)

z2
lim

1

pz2
tr
(
K̃

(
m(z)

) + m(z)Tp

)−1Tp

(
K̃

(
m(z)

) + m(z)Tp

)−1
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× 1

p

p∑
i=1

e∗
i T∗

p,1/2D−1
2

(
m(z)

)
Tp,1/2ei · e∗

i T∗
p,1/2D−1

2j

(
m(z)

)
S2D−1

2j

(
m(z)

)
Tp,1/2ei

= m0(z)

z2m2(z)

∫
t2 dH(t)

(t + m0(z))3
− m2(z)m2

0(z)
y2

m(z)

∮
t

(t + m0(z))2
dH(t)

× 1

pz2
lim

p∑
i=1

e∗
i T∗

p,1/2D−1
2

(
m(z)

)
Tp,1/2ei

× e∗
i T∗

p,1/2D−1
2j

(
m(z)

)
S2D−1

2j

(
m(z)

)
Tp,1/2ei

= m0(z)

z2m2(z)

∫
t2 dH(t)

(t + m0(z))3
− y2

m(z)

∮
t

(t + m0(z))2
dH(t)

× 1

pz2
lim

p∑
i=1

e∗
i T∗

p,1/2D−1
2

(
m(z)

)
Tp,1/2ei

× e∗
i T∗

p,1/2D−1
2

(
m(z)

)
S2D−1

2

(
m(z)

)
Tp,1/2ei

= m0(z)

z2m2(z)

∫
t2 dH(t)

(t + m0(z))3
− hm1

y2

m(z)

∮
t

(t + m0(z))2
dH(t),

where

n2∑
j=1

eiT∗
p,1/2D−1

2

(
m(z)

)
ηjη

∗
j D−1

2j

(
m(z)

)
Tp,1/2ei

=
n2∑

j=1

eiT∗
p,1/2D−1

2

(
m(z)

)
ηjη

∗
j D−1

2

(
m(z)

)
Tp,1/2ei

+
n2∑

j=1

eiT∗
1/2D−1

2

(
m(z)

)
ηjη

∗
j D−1

2j

(
m(z)

)
T1/2ei · η∗

j D−1
2j (m(z))ηj

1 + y2mI(−m(z))

=
n2∑

j=1

eiT∗
p,1/2D−1

2

(
m(z)

)
ηjη

∗
j D−1

2

(
m(z)

)
Tp,1/2ei

+
n2∑

j=1

eiT∗
1/2D−1

2

(
m(z)

)
ηjη

∗
j D−1

2j

(
m(z)

)
T1/2ei · y2mI(−m(z))

1 + y2mI(−m(z))
+ op(1)

=
n2∑

j=1

eiT∗
p,1/2D−1

2

(
m(z)

)
ηjη

∗
j D−1

2

(
m(z)

)
Tp,1/2ei
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+
n2∑

j=1

eiT∗
1/2D−1

2

(
m(z)

)
ηjη

∗
j D−1

2j

(
m(z)

)
T1/2ei · y2mI(−m(z))

1 + y2mI(−m(z))
+ op(1)

= 1

m(z)m0(z)

n2∑
j=1

eiT∗
p,1/2D−1

2

(
m(z)

)
ηjη

∗
j D−1

2

(
m(z)

)
Tp,1/2ei + op(1)

and similarly we have

n2∑
j=1

eiT∗
p,1/2D−1

2j

(
m(z)

)
ηjη

∗
j D−1

2j

(
m(z)

)
Tp,1/2ei

= 1

m2(z)m2
0(z)

n2∑
j=1

eiT∗
p,1/2D−1

2

(
m(z)

)
ηjη

∗
j D−1

2

(
m(z)

)
Tp,1/2ei + op(1)

= 1

m2(z)m2
0(z)

eiT∗
p,1/2D−1

2

(
m(z)

)
S2D−1

2

(
m(z)

)
Tp,1/2ei + op(1).

Then we have

hm1 =
m0(z)

z2m2(z)

∫
t2 dH(t)

(t+m0(z))
3

1 + y2
m(z)

∮
t

(t+m0(z))
2 dH(t)

=
m2

0(z)

z2m(z)

∫
t2

(t+m0(z))
3 dH(t)

1 − y2
∮ m2

0(z)

(t+m0(z))
2 dH(t)

, (B.72)

where

1 + y2

m(z)

∫
t

(t + m0(z))2
dH(t)

= 1

m(z)m0(z)

[
m(z)m0(z) + y2

∫
m0(z)

t + m0(z)
dH(t)

− y2

∫
m2

0(z)

(t + m0(z))2
dH(t)

]

= 1

m(z)m0(z)

[
1 − y2

∫
m2

0(z)

(t + m0(z))2
dH(t)

]
.

Because

m(z) = − 1

m0(z)
+ y2

∫
dH(t)

m0(z) + t
,

then we have

m′(z) = 1

m2
0(z)

(
1 − y2

∫
m2

0(z)

(t + m0(z))
2

dH(t)

)
m′

0(z).
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Moreover, we have

z = h2

y2m(z)
+ y1

y2
m0(z) (B.73)

= − h2m0(z)

y2(1 − y2 + y2
∫

t
t+m0(z)

dH(t))
+ y1m0(z)

y2
. (B.74)

Therefore, by (B.73), we have

1 = − h2

y2m2(z)
m′(z) + y1

y2
m′

0(z)

= −
(1 − y2

∫ m2
0(z)

(t+m0(z))
2 dH(t))

m2(z)m2
0(z)

(
h2

y2
− y1

y2

m2(z)m2
0(z)

1 − y2
∫ m2

0(z)

(t+m0(z))
2 dH(t)

)
m′

0(z).

That is,

m′
0(z) = − m2(z)m2

0(z)

(h2

y2
− y1

y2

m2(z)m2
0(z)

1−y2
∫ m2

0(z)

(t+m0(z))2
dH(t)

)(1 − y2
∫ m2

0(z)

(t+m0(z))
2 dH(t))

(B.75)

= − (−1 + y2
∫

m0(z)
t+m0(z)

dH(t))2

(h2

y2
− y1

y2

m2(z)m2
0(z)

1−y2
∫ m2

0(z)

(t+m0(z))2
dH(t)

)(1 − y2
∫ m2

0(z)

(t+m0(z))
2 dH(t))

.

Then by (B.72) and (B.75), we obtain

−βxy1

2πi
·
∮
C

f (z)
z2m3(z) · hm1(z)

h2

y2
− y1

y2
· (1−∫ y2m0(z)

t+m0(z)
dH(t))2

1−∫ y2m2
0(z)

(t+m0(z))2
dH(t)

dz

= βxy1

2πi
·
∮
C

f (z)
m2(z)m2

0(z) · ∫ t2

(t+m0(z))
3 dH(t)

(h2

y2
− y1

y2
· (1−∫ y2m0(z)

t+m0(z)
dH(t))2

1−∫ y2m2
0(z)

(t+m0(z))2
dH(t)

)(1 − y2
∮ m2

0(z)

(t+m0(z))
2 dH(t))

dz

= βxy1

2πi
·
∮
C

f (z)

[∫
t2

(t + m0(z))3
dH(t)

]
dm0(z).

The proof is completed. �
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B.6. Proofs of Remark 4.2

We have

βxy1

2πi

∮
C

f (z)

[∫
t2

(t + m0(z))3
dH(t)

]
dm0(z)

= −βxy1

2πi

∮
C

f (z)

∫
t2

(t+m0(z))
3 dH(t) · (−1 + y2

∫
m0(z)

t+m0(z)
dH(t))2

(h2

y2
− y1

y2

m2
y(z)m2

0(z)

1−y2
∫ m2

0(z)

(t+m0(z))2
dH(t)

)(1 − y2
∫ m2

0(z)

(t+m0(z))
2 dH(t))

dz.

Because

m′
0(z) = −m′(z)m2

0(z)

1 − y2
∫ m2

0(z) dH(t)

(t+m0(z))
2

,

then we have

m′(z) = (−1 + y2
∫

m0(z)
t+m0(z)

dH(t))2

m2
0(z)(

h2

y2
− y1

y2

m2
y(z)m2

0(z)

1−y2
∫ m2

0(z)

(t+m0(z))2
dH(t)

)

.

Thus we obtain (
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)[
log

(
1 − y2

∫
m2

0 dH(t)

(t + m0)2

)]′

=
(

1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)2m′(z)y2
∫ tm3

0 dH(t)

(t+m0)
3

(1 − y2
∫ m2

0 dH(t)

(t+m0)
2 )2

=
2y2m0(z)

∫
t dH(t)

(t+m0)
3

1 − y2
∫ m2

0 dH(t)

(t+m0)
2

(−1 + y2
∫

m0(z)
t+m0(z)

dH(t))2

(h2

y2
− y1

y2

m2
y(z)m2

0(z)

1−y2
∫ m2

0(z)

(t+m0(z))2
dH(t)

)

.

Then we have

βy

4πi

∮
C

f (z)

(
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)
d log

(
1 − y2

∫
m2

0(z) dH(t)

(t + m0(z))2

)
(B.76)

= βy

2πi

∮
C

f (z)
y2m0(z)

∫
t dH(t)

(t+m0)
3

1 − y2
∫ m2

0 dH(t)

(t+m0)
2

(−1 + y2
∫

m0(z)
t+m0(z)

dH(t))2

(h2

y2
− y1

y2

m2
y(z)m2

0(z)

1−y2
∫ m2

0(z)

(t+m0(z))2
dH(t)

)

dz.

So the proof of Remark 4.2 is completed.
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