11 research outputs found
Feasibility of measuring renal blood flow by phase-contrast magnetic resonance imaging in patients with autosomal dominant polycystic kidney disease
Measurements of neonatal bilirubin and albumin concentrations: a need for improvement and quality control
Item does not contain fulltextAccurate and precise bilirubin and albumin measurements are essential for proper management of jaundiced neonates. Data hereon are lacking for Dutch laboratories. We aimed to determine variability of measurements of bilirubin and albumin concentrations typical for (preterm) neonates. Aqueous, human serum albumin-based samples with different concentrations of bilirubin (100, 200, 300, 400, and 500 mumol/L) and albumin (0, 10, 15, 20, 25, and 30 g/L) were sent to laboratories of all Dutch neonatal intensive care units (n = 10). Bilirubin and albumin recoveries of the specimens were measured using locally available routine analytical methods. The mean, standard deviation, and coefficients of variations (CV) were calculated per sample. Bilirubin concentrations were underestimated in the absence of albumin (maximal CV 26.0%). When the albumin concentration was 10 or 20 g/L, the bilirubin concentrations of the samples were overestimated (maximal CV 14.1% and 9.2%, respectively). Variability increased with higher weighed-in bilirubin concentrations. Measured albumin levels were ~10% lower than albumin levels of manufactured samples. Bilirubin concentration did not influence albumin measurements. The maximal CV was 6.8%. In conclusion, interlaboratory variability of bilirubin and albumin measurements is high. Recalibration and introduction of a specific quality assessment scheme for neonatal samples is recommended to ensure exchangeability of bilirubin and albumin measurements among laboratories and to control the observed large variability
Polyuria due to vasopressin V2 receptor antagonism is not associated with increased ureter diameter in ADPKD patients
Interpreting different measures of glomerular filtration rate in obesity and weight loss: pitfalls for the clinician
To combat the increasing incidence of obesity, much research has been devoted to devising successful strategies for weight loss, including manipulation of diet and gastric surgery. Obesity itself can be associated with renal dysfunction, and the degree of reversibility of this with weight loss has being studied. However, there are significant limitations and flaws in the methods we have available to measure glomerular filtration rate (GFR) in overweight and obese subjects. Obesity is associated with changes in body composition including lean and fat mass. This has implications for assumptions that underpin creatinine-based measures such as creatinine clearance, estimated GFR and other equations devised for obesity including the Salazar–Corcoran equation. These changes in body composition also affect measures of glomerular filtration such as cystatin C and nuclear medicine isotope scans. This article will review the accuracy of these current measures of renal function in the obese and consider the evidence for adjusting for body surface area or adjusting for lean body mass. Finally, the effect of weight loss itself on serial measurements of renal function in a given individual, independent of a true change in renal function, will be reviewed. Ultimately using the Cockcroft–Gault equation with an adjustment for lean body mass seems to be the best measure for renal function in obesity. No method for measuring renal function in situations of weight loss has been shown to be unequivocally superior.D.R. Jesudason and P. Clifto
