3,608 research outputs found
Precision Measurement of Orthopositronium Decay Rate Using SiO_2 Powder
The intrinsic decay rate of orthopositronium formed in powder
is measured using the direct correction method such that the time
dependence of the pick-off annihilation rate is precisely determined using high
energy-resolution germanium detectors. As a systematic test, two different
types of powder are used with consistent findings. The intrinsic
decay rate of orthopositronium is found to be , which is consistent with previous measurements using powder with about twice the accuracy. Results agree well with a recent
QED prediction, varying experimental standard
deviations from other measurements.Comment: 16 pages, 7 figures included. To be published in Physics Letters
Solution of Orthopositronium lifetime Puzzle
The intrinsic decay rate of orthopositronium formed in powder
is measured using the direct correction method such that the time
dependence of the pick-off annihilation rate is precisely determined. The decay
rate of orthopositronium is found to be , which is consistent with our previous measurements with
about twice the accuracy. Results agree well with the QED
prediction, and also with a result reported very recently using nanoporous
film
Measurement of the analyzing power of proton-carbon elastic scattering in the CNI region at RHIC
The single transverse spin asymmetry, A_N, of the p-carbon elastic scattering
process in the Coulomb Nuclear Interference (CNI) region was measured using an
ultra thin carbon target and polarized proton beam in the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). In 2004, data were
collected to calibrate the p-carbon process at two RHIC energies (24 GeV, 100
GeV). A_N was obtained as a function of momentum transfer -t. The results were
fit with theoretical models which allow us to assess the contribution from a
hadronic spin flip amplitude.Comment: Contribution to the proceedings of the 16th International Spin
Physics Symposium, spin2004 (Trieste
Measurement of the analyzing power in pp elastic scattering in the peak CNI region at RHIC
We report the first measurements of the A_N absolute value and shape in the
-t range from 0.0015 to 0.010GeV/c^2 with a precision better than 0.005 for
each A_N data point using a polarized atomic hydrogen gas jet target and the
100 GeV RHIC proton beam.Comment: 4 pages, 5 figure
Precise measurement of positronium hyperfine splitting using the Zeeman effect
Positronium is an ideal system for the research of the quantum
electrodynamics (QED) in bound state. The hyperfine splitting (HFS) of
positronium, , gives a good test of the bound state
calculations and probes new physics beyond the Standard Model. A new method of
QED calculations has revealed the discrepancy by 15\,ppm (3.9) of
between the QED prediction and the experimental
average. There would be possibility of new physics or common systematic
uncertainties in the previous all experiments. We describe a new experiment to
reduce possible systematic uncertainties and will provide an independent check
of the discrepancy. We are now taking data and the current result of
has been obtained so far. A measurement with a precision of (ppm) is
expected within a year.Comment: 8 pages, 8 figures, 2 tables, proceeding of LEAP2011, accepted by
Hyperfine Interaction
First test of correction of the orthopositronium decay rate
Positronium is an ideal system for the research of the bound state QED. New
precise measurement of orthopositronium decay rate has been performed with an
accuracy of 150 ppm. This result is consistent with the last three results and
also the 2nd order correction. The result combined with the last three is
7.0401 (100 ppm), which is consistent with the
2nd order correction and differs from the 1st order calculation by 2.6
It is the first test to validate the 2nd order correction.Comment: will be submitted to Phys. Lett.
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Mid-Rapidity Direct-Photon Production in p+p Collisions at sqrt(s) = 200 GeV
A measurement of direct photons in p+p collisions at sqrt(s)=200 GeV is
presented. A photon excess above background from pi^0 --> gamma+gamma, eta -->
gamma+gamma, and other decays is observed in the transverse momentum range 5.5
< p_T < 7 GeV/c. The result is compared to a next-to-leading-order perturbative
QCD calculation. Within errors, good agreement is found between the QCD
calculation and the measured result.Comment: 330 authors, 7 pages text, RevTeX, 2 figures, 2 tables. Submitted to
Physical Review D. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
- …