1,790 research outputs found

    Chemically encoded self-organized quantum chain supracrystals with exceptional charge and ion transport properties

    Get PDF
    Artificially grown superstructures from small building blocks is an intriguing subject in ‘bottom-up’ molecular science and nanotechnology. Although discrete nanoparticles with different morphologies and physicochemical properties are readily produced, assembly them into higher-order structure amenable to practical applications is still a considerable challenge. This report introduces a stepwise heterogeneous approach for coupling colloidal quantum dots (QDs) synthesis with self-organization to directly generate quantum chains (QCs). By using vulcanized sulfur precursors, QDs are interdigitated into microscale chainlike supracrystals associated with oleylamine and oleic acid as structure directing agents. The cooperative nature of the QD growth and assembly have been extended to fabricate binary (PbS) and ternary metal chalcogenides (CuInS2) QC superstructures over a range of length scales. In addition, enhanced ion and charge transfer performance have been demonstrated which are determined to originate from the minimum interparticle distance and nearly bare nanocrystal surface. The process reported here is general and can be readily extended to the production of many other metal chalcogenide QD superstructures for energy storage applications

    Mechanism for CCC DNA Synthesis in Hepadnaviruses

    Get PDF
    Hepadnavirus replication requires the synthesis of a covalently closed circular (CCC) DNA from the relaxed circular (RC) viral genome by an unknown mechanism. CCC DNA formation could require enzymatic activities of the viral reverse transcriptase (RT), or cellular DNA repair enzymes, or both. Physical mapping of the 5′ and 3′ ends of RC DNA and sequence analysis of CCC DNA revealed that CCC DNA synthesis requires the removal of the RT and an RNA oligomer from the 5′ ends of minus and plus strand DNA, respectively, removal of sequences from the terminally redundant minus strand, completion of the less than full-length plus strand, and ligation of the ends. Two models have been proposed that could explain CCC DNA formation. The first (model 1) invokes a role for the RT to catalyze a cleavage-ligation reaction leading to the formation of a unit length minus strand in CCC DNA and a DNA repair reaction for the completion and ligation of plus strand DNA; the second (model 2) predicts that CCC DNA formation depends entirely on cellular DNA repair enzymes. To determine which mechanism is utilized, we developed cell lines expressing duck hepatitis B virus genomes carrying mutations permitting us to follow the fate of viral DNA sequences during their conversion from RC to CCC DNA. Our results demonstrated that the oligomer at the 5′ end of minus strand DNA is completely or at least partially removed prior to CCC DNA synthesis. The results indicated that both RC DNA strands undergo DNA repair reactions carried out by the cellular DNA repair machinery as predicted by model 2. Thus, our study provided the basis for the identification of the cellular components required for CCC DNA formation

    High Performance Electrocatalysts Based on Pt Nanoarchitecture for Fuel Cell Applications

    Get PDF
    Fuel cells, converting chemical energy from fuels into electricity directly without the need for combustion, are promising energy conversion devices for their potential applications as environmentally friendly, energy efficient power sources. However, to take fuel cell technology forward towards commercialization, we need to achieve further improvements in electrocatalyst technology, which can play an extremely important role in essentially determining cost-effectiveness, performance, and durability. In particular, platinum- (Pt-) based electrocatalyst approaches have been extensively investigated and actively pursued to meet those demands as an ideal fuel cell catalyst due to their most outstanding activity for both cathode oxygen reduction reactions and anode fuel oxidation reactions. In this review, we will address important issues and recent progress in the development of Pt-based catalysts, their synthesis, and characterization. We will also review snapshots of research that are focused on essential dynamics aspects of electrocatalytic reactions, such as the shape effects on the catalytic activity of Pt-based nanostructures, the relationships between structural morphology of Pt-based nanostructures and electrochemical reactions on both cathode and anode electrodes, and the effects of composition and electronic structure of Pt-based catalysts on electrochemical reaction properties of fuel cells.</jats:p

    Response Inhibition During Processing of Sexual Stimuli in Males with Problematic Hypersexual Behavior

    Get PDF
    BACKGROUND AND AIMS: Individuals with problematic hypersexual behavior (PHB) are unable to control their sexual cravings, regardless of other situational factors. This inability to control cravings is a common trait in patients with neurological pathologies related to response inhibition. Until recently, however, it was unclear whether individuals with PHB have decreased inhibition and altered neural responses in the brain regions associated with inhibition compared to healthy control individuals, especially in the presence of distracting sexual stimuli. In this study, we examined the neural and psychological underpinnings of inhibition in individuals with PHB. METHODS: Thirty individuals with PHB and 30 healthy subjects underwent functional magnetic resonance imaging while performing a modified go/no-go task with neutral or sexual backgrounds used as distractors. RESULTS: Individuals with PHB showed poorer response inhibition than healthy subjects, especially when sexual distractors were present. Further, compared to healthy control subjects, individuals with PHB showed decreased activation in the right inferior frontal gyrus (IFG) and reduced functional connectivity between the IFG and the pre-supplementary motor area (preSMA) when response inhibition was required. Finally, the reduced activation and connectivity were more pronounced in the presence of sexual distractors than in the presence of neutral distractors. DISCUSSION: These findings suggest that individuals with PHB show reduced ability to inhibit responses that might be related to lower IFG activation and IFG-preSMA connectivity during response inhibition. Our results provide insights into the neurobiological underpinnings of poor response inhibition in individuals with PHB

    Altered Prefrontal and Inferior Parietal Activity During a Stroop Task in Individuals With Problematic Hypersexual Behavior

    Get PDF
    Accumulating evidence suggests a relationship between problematic hypersexual behavior (PHB) and diminished executive control. Clinical studies have demonstrated that individuals with PHB exhibit high levels of impulsivity; however, relatively little is known regarding the neural mechanisms underlying impaired executive control in PHB. This study investigated the neural correlates of executive control in individuals with PHB and healthy controls using event-related functional magnetic resonance imaging (fMRI). Twenty-three individuals with PHB and 22 healthy control participants underwent fMRI while performing a Stroop task. Response time and error rates were measured as surrogate indicators of executive control. Individuals with PHB exhibited impaired task performance and lower activation in the right dorsolateral prefrontal cortex (DLPFC) and inferior parietal cortex relative to healthy controls during the Stroop task. In addition, blood oxygen level-dependent responses in these areas were negatively associated with PHB severity. The right DLPFC and inferior parietal cortex are associated with higher-order cognitive control and visual attention, respectively. Our findings suggest that individuals with PHB have diminished executive control and impaired functionality in the right DLPFC and inferior parietal cortex, providing a neural basis for PHB

    Inorganic-ligand exchanging time effect in PbS quantum dot solar cell

    Get PDF
    We investigate time-dependent inorganic ligand exchanging effect and photovoltaic performance of lead sulfide (PbS) nanocrystal films. With optimal processing time, volume shrinkage induced by residual oleic acid of the PbS colloidal quantum dot (CQD) was minimized and a crack-free film was obtained with improved flatness. Furthermore, sufficient surface passivation significantly increased the packing density by replacing from long oleic acid to a short iodide molecule. It thus facilities exciton dissociation via enhanced charge carrier transport in PbS CQD films, resulting in the improved power conversion efficiency from 3.39% to 6.62%. We also found that excess iodine ions on the PbS surface rather hinder high photovoltaic performance of the CQD solar cell

    Emission Rates of Volatile Organic Compounds Released from Newly Produced Household Furniture Products Using a Large-Scale Chamber Testing Method

    Get PDF
    The emission rates of volatile organic compounds (VOCs) were measured to investigate the emission characteristics of five types of common furniture products using a 5 m3 size chamber at 25°C and 50% humidity. The results indicated that toluene and α-pinene are the most dominant components. The emission rates of individual components decreased constantly through time, approaching the equilibrium emission level. The relative ordering of their emission rates, if assessed in terms of total VOC (TVOC), can be arranged as follows: dining table > sofa > desk chair > bedside table > cabinet. If the emission rates of VOCs are examined between different chemical groups, they can also be arranged in the following order: aromatic (AR) > terpenes (TER) > carbonyl (CBN) > others > paraffin (PR) > olefin (HOL) > halogenated paraffin (HPR). In addition, if emission strengths are compared between coated and uncoated furniture, there is no significant difference in terms of emission magnitude. Our results indicate that the emission characteristics of VOC are greatly distinguished between different furniture products in terms of relative dominance between different chemicals
    corecore