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Fuel cells, converting chemical energy from fuels into electricity directly without the need for combustion, are promising energy
conversion devices for their potential applications as environmentally friendly, energy efficient power sources. However, to take
fuel cell technology forward towards commercialization, we need to achieve further improvements in electrocatalyst technology,
which can play an extremely important role in essentially determining cost-effectiveness, performance, and durability. In particular,
platinum- (Pt-) based electrocatalyst approaches have been extensively investigated and actively pursued to meet those demands
as an ideal fuel cell catalyst due to their most outstanding activity for both cathode oxygen reduction reactions and anode fuel
oxidation reactions. In this review, we will address important issues and recent progress in the development of Pt-based catalysts,
their synthesis, and characterization. We will also review snapshots of research that are focused on essential dynamics aspects of
electrocatalytic reactions, such as the shape effects on the catalytic activity of Pt-based nanostructures, the relationships between
structural morphology of Pt-based nanostructures and electrochemical reactions on both cathode and anode electrodes, and the
effects of composition and electronic structure of Pt-based catalysts on electrochemical reaction properties of fuel cells.

1. Introduction

Low temperature fuel cells based on the proton exchange
membrane fuel cells (PEMFCs) and direct alcohol fuel cells
(DAFCs) technology continue to be of considerable interest
as one of the most promising electrochemical conversion
devices for widespread use as clean, renewable, and non-
polluting power sources in electrical vehicles and portable
electronic devices as well as various stationary power sys-
tems as they offer high efficiency, modularity, low operating
temperature, and low pollutant emissions [1, 2]. However,
despite these attractive features and environmentally favor-
able energy sources with a variety of practical applications,
there are challenging important issues to be addressed in
order to take fuel cell technology forward towards successful
commercialization. In particular, an electrocatalyst, serving
as a basis for operation of fuel cells, is extremely impor-
tant as a crucial component, essentially determining cost-
effectiveness, performance, and durability [3].

Among various electrocatalysts studied so far, platinum-
(Pt-) based electrocatalyst materials have attracted extensive
attention over the past decade as an ideal fuel cell catalyst
due to their most outstanding activity for both cathode
oxygen reduction reactions (ORRs) and anode fuel oxidation
reactions [4–6]. However, Pt catalysts still suffer from several
problems, which need to be solved, such as their high cost,
catalyst deactivation through active site blocking caused by
CO poisoning generated as reaction by-products, and the
kinetic limitation of the ORR as well as high overpotential
and low long-term stability of oxygen electroreduction reac-
tions [7–10]. To date there have been significant worldwide
efforts to address such problems by introducing various
architectures of Pt catalysts: (1) the shape-controlled Pt-
based nanostructure [11, 12], (2) the dimension-controlled Pt-
based nanostructures [13, 14], (3) the simply alloying of Pt
crystal structure with a second transition metal (Co, Fe, Ni,
etc.) [15–17], and (4) the bimetallic Pt-based nanostructures
with core-shell structure [18, 19]. Recently, most researches
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have mainly focused on control over the morphology and
composition of Pt-based nanostructures to enhance their
electrocatalytic activity and stability as genuinely practical
approaches for fuel cell electrocatalysts [20–22]. To this end,
various strategies have been developed to control the shape
of Pt-based nanostructures using different synthetic routes,
for example, use of polyol in aqueous or organic solution,
thermal-decomposition process, and electrochemical and
photochemical reduction techniques [23–27]. Furthermore,
the synthesis of diverse Pt-based nanostructures has also been
demonstrated by controlling the morphology and composi-
tion of catalytic nanostructures to fundamentally understand
their catalytic activity and performance with their dimen-
sional (D) versatility, such as 0D (cube, octahedron, truncated
cube, and icosahedron) [28–31], 1D (wire and rod) [32, 33], 2D
(plate and disk) [34, 35], and 3D nanostructures (star, flower,
and dendrite) [36, 37]. In this paper, therefore, we aim to
review the practical issues and recent research progress in the
development of synthetic methods for high efficient, stable
electrocatalysts based on nanoarchitectured Pt with various
shapes and faceted morphologies. In addition, in order to
understand fundamental electrochemical reaction features in
low temperature fuel cells, we will focus on the following
essential dynamics aspects of electrocatalytic reactions: (1)
shape effects on the catalytic activity of Pt-based nanostruc-
tures, (2) relationships between structural morphology of
Pt-based nanostructures and electrochemical reactions on
both electrodes, and (3) effects of composition and electronic
structure of Pt-based catalysts on electrochemical reaction
properties of fuel cells. This review will provide insights not
only into comprehensively understanding electrochemical
mechanism and characteristics in fuel cell reactions, but also
into developing novel and practical electrocatalysts useful for
both electrode reactions in low temperature fuel cells.

2. Synthesis of Pt-Based
Nanostructures as Electrocatalysts

2.1. Polyol Method in an Aqueous or Organic Solution. A
polyol approach, which is an effective technique to synthesize
particles with a wide range of sizes and morphologies, has
attracted attention for the induced reduction of a metal
precursor due to the easy and cost-effective syntheticmethod.
This method is based on the decomposition of alcohol con-
taining hydroxyl (–OH) functional groups and the proposed
basic reduction mechanism in ethylene glycol as a reducing
agent is as follows [38]:
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Here it is important to note that the kinetic rates of
reduction of metal ions, affecting the morphology and shape
of particles, can be strongly influenced by alky chain lengths,
which are different depending on employed reducing agents,
such as ethylene glycol, l-ascorbic acid, citric acid, and
poly(vinyl pyrrolidone) (PVP) [39]. Xia group reported that

truncated octahedrons (or the so-called Wulff polyhedron)
enclosed by eight {111} and six {100} facets of Pd can be
obtained from the l-ascorbic acid, exhibiting a fast kinetic
rate (Figure 1(b)) [40]. Also, when the citric acid with a
moderate kinetic rate of reduction was used as a reducing
agent, the icosahedrons, octahedrons, and decahedrons of
Pd enclosed by the {111} facets were obtained, as shown
Figure 1(c). In contrast, the PVP with a long alkyl chain
and two hydroxyl groups at end group of polymer exhibits
much low kinetic rate of reduction. As a result, the Pd
nanostructures with the shape of hexagonal and triangular
nanoplates were synthesized by using PVP because their
nuclei with a metastable hexagonal structure could remain
small for a long period of time due to the slow addition of
atoms, gradually evolving into plate-like seeds in Figure 1(d).

In recent, we synthesized the Pt-Pd nanostructure with an
octahedral shape enclosed by {111} facets using glycerol as a
new reducing agent in aqueous solutions [41]. It was found
that the glycerol can lead to the faster reduction reaction
of metal ions because it has a relatively short alkyl chain
and three hydroxyl groups. Moreover, it is believed the fast
reduction reaction might tend to thermodynamically min-
imize crystalline surface energy and hence resulting in the
formation of crystal facets with the lower surface energy in
the structure.Thus, this implies that Pt-Pd nanostructure can
be synthesized with {111} side facets, forming the octahedral
shape by the rapid reduction reaction due to the relative
surface energy of 𝛾{111} < 𝛾{100} < 𝛾{110} planes in fcc
structures [42]. Furthermore, to confirm reduction mecha-
nism by glycerol, we performed Fourier transform infrared
(FT-IR) measurements. In general, according to the basic
mechanism of metal reduction induced by the polyol, metal
ions are reduced to metal atoms by an aldehyde (CHO) func-
tional group, which is transformed into a carboxyl (COOH)
group with a ketone (C=O) group.Thus, as a strong evidence
of oxidized glycerol, the IR absorption band of the C=O
stretch was clearly observed between 1720 and 1740 cm−1 in
Figure 2(a). This finding clearly confirmed that the glycerol
was changed into glyceraldehydes and glyceric acid during
the reduction of metal ions as shown in Figure 2(b).

In addition, it has been also reported that additive agents,
such as organic materials like polymer and small molecules
acting as capping agents, metal ions with redox potential,
and halogen ions, play an important role in controlling
the shape of Pt-based nanostructures. For example, organic
materials, such as PVP, cetyltrimethylammonium-bromide
(CTAB) and chloride (CTAC), citrate, sodium polyacrylate,
tetradecyltrimethylammonium bromide (TTAB), effectively
act as both a surface adsorption agent for shape-controlled
nanoparticles and a surfactant agent for prevention of
aggregation among metal nanoparticles during synthesis
process [43–46]. However, although organic materials are
beneficial for the shape control of the metal, they often
exhibit a reduced or poisoning phenomenon of active sites
in the electrochemical reactions due to the strong chemical
adsorption between capping agents and catalyst surface.
Thus, for electrochemical applications in fuel cells, it is
essentially imperative to remove organic capping agents
from catalyst surface. For this, various strategies have been
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Figure 1: (a) Structural illustration of l-ascorbic acid, citric acid, andOH-terminated PVP and their oxidized forms due to the redox reactions
with Pd2+ ions. TEM images of Pd (b) truncated octahedrons, (c) icosahedrons, and (d) hexagonal and triangular nanoplates synthesized by
l-ascorbic acid, citric acid, and PVP, respectively. Reproduced with permission from [40].

developed by using different techniques, such as acid [47],
thermal [48], UV-ozone [49], electrochemical [50], plasma
[51], or chemical treatment [52]. However, whereas these
approaches have advantages of a relatively high removal rate
for organic capping agents, these cause the formation of
secondary defects on catalyst surface and the variation of an
as-prepared Pt-based nanostructure shape. Accordingly, the
advanced development of effective surface treatment process
and synthesis methods based on nonorganic capping agents
is required for enhanced electrochemical properties in low
temperature fuel cells.

In addition to introduction of various reducing agents
with different alky chain lengths and organic capping agents
for the control of Pt-based nanostructure shapes, utilizing
metal cations, such as Fe2+/Fe3+ and Ag+ ions, and even
nonmetal anions, such asNO

3

−, can be considered as another

strategy to adjust the shape of Pt-based nanostructures. As
shown in Figure 3, Song and coworkers demonstrated the
synthesis of Pt nanostructures with the controlled shape
by the selective adsorption of Ag ions as an additive agent
[53]. As the concentration of Ag ions in reaction solution
is continuously increased, the shape of Pt nanostructures is
changed from cube to octahedron.We also demonstrated the
growth of cubic Pt nanostructures using Fe2+/Fe3+ ions hav-
ing redox potential as an additive agent [54]. Fe3+ ions could
lead to slow nucleation and growth of Pt, leaving behind
thermodynamically stable {100} planes.That is, Fe3+ ions can
greatly reduce the supersaturation of Pt atoms, resulting in
formation of a stable crystal plane. The growth dynamics of
Pt nanocubes can be described by the following equation:

2Fe3+ + Pt0 󳨀→ 2Fe2+ + Pt2+ (3)
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Figure 2: (a) FT-IR spectrum with respect to the reduction of metal salts with glycerol as a reducing agent in aqueous solution at 12 and
24 h in comparison with H

2
O. (b) The reduction mechanism of Pt and Pd ions for Pt-Pd alloy nanoparticles synthesized using glycerol as a

reducing agent. Reproduced with permission from [41].
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Figure 3: TEM and HR-TEM images of Pt (a) cube, (b) cuboctahedron, and (c) octahedron resulting from different Ag concentrations in
solution during growth. Amole fraction of Ag to Pt in cube, cuboctahedron, and octahedron is 1.1, 11, and 32mol%, respectively. Reproduced
with permission from [53].
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Similar to roles of Ag+ ions in nanoparticle growth,
Xia and coworkers reported that a variety of shapes in Pt-
based nanostructures can be obtained through the control
of kinetic reduction rates by NO

3

− ions as an additive agent
[55]. It was found that Pt nanoparticles exhibited an irregular
shape and their sizes varied in the range of 3–5 nm without
the introduction of NO

3

− ions. Noticeably, as the molar
concentration of NO

3

− ions was increased, the geometrical
morphology of Pt nanoparticles was transformed from an
irregular shape with smaller size, through a polyhedral shape
with uniform size until 3.3molar ratios of NO

3

− ion to Pt salt,
to the uniform octapod and tetrapod at high concentration
of NO

3

− ions over 3.3 molar ratios.These results indicate that
NO
3

− ions could hinder the reduction of Pt(IV) ions because
the reduction potential of NO

3

− ion is higher than that of
Pt(IV) ions as follows:

NO
3

−
+ 2H+ + 2e− 󳨀→ NO

2

−
+H
2
O E∘ = 0.94V (4)

PtCl
6

2−
+ 2e− 󳨀→ PtCl

4

2−
+ 2Cl− E∘ = 0.74V (5)

They also confirmed the formation of intermediate
Pt(NO

2
)
6

2− ions. This finding suggests that Pt(NO
2
)
6

2−

ions can play a role in reducing the rate of reduction during
the synthesis process.

2.2. Thermal-Decomposition Method. Compared to a polyol
method, a thermal-decomposition approach is beneficial for
the production of shape-controlled Pt-based nanostructures
with high yield, uniform shape, and high reproducibility
because of protection from oxidative etching and subreaction
[56, 57]. Furthermore, it is recognized that this is a very
effective method for designing core@shell structures and
controlling alloy compositions.

Recently, we reported that Pt nanocubes were success-
fully synthesized by a thermal-decomposition method using
PVP as an additive agent, 1-octadecene as a solvent, and
oleylamine as a capping agent for enhanced electrochemical
properties in alcohol electrooxidation reactions [31]. It is
worth noting that the shape controlled Pt-based nanostruc-
ture with not only unique exposed surface, but also large
surface area is important to enhance the electrochemical
properties. However, it has been mostly reported that Pt-
based nanostructures with shape control have lager particle
size of over 10 nm, hence exhibiting smaller electrochemical
active surface areas (EASAs). Accordingly, for enhanced elec-
trochemical properties, the ability to tailor facets and size of
Pt-based nanomaterials is tremendously important, allowing
favorably exposed surface structures of nanoparticles with
smaller size comparable to commercial Pt electrocatalysts.
It was clearly observed that our Pt nanocubes have much
smaller particle size of average 4.5 nmcompared to previously
reported nanocubes with particle size of over 10 nm [58, 59].
In particular, we found that PVP can play an important
role in forming Pt cubes enclosed by {100} facets and
monodispersed nanoparticles in Figures 4(a) and 4(b) due
to its attractive feature to bind with Pt {100} facets. On
the contrary, Pt nanoparticles synthesized in the absence
of PVP showed the polydispersed nanoparticles and slight

aggregation between nanoparticles as shown in Figure 4(c).
Moreover, it has been shown that amine functional groups
could be important key factors to determine the shape
and size of Pt-based nanocubes through assistance of W
metal ions controlling kinetic reduction rate or/and carbon
monoxide (CO) gas acting as a selective adsorption material.
For example, Fang and coworkers demonstrated the synthesis
of PtM alloy (M is Co, Fe, and Ni) nanocubes by introducing
W(CO)

6
in oleylamine and oleic acid solutions [60]. They

suggested that the use of W(CO)
6
is crucial for controlling

nucleation process and that an optimized ratio of oleylamine
and oleic acid pair is the key to enable us to obtain the
lowest total surface energy.They believed that the preferential
chemisorption and monolayer adsorption of oleylamine on
{100} facets of PtM can lead to the lowering of total surface
energy of the {100} facet of PtM, resulting in the cube
shape. Fu and coworkers also reported that Pt nanocubes
can be synthesized using CO in a mixed solvent system
of oleylamine and oleic. Similar to the oleylamine, it is
revealed that the CO gas strongly binds with Pt {100} facets,
affecting the morphology of Pt nanoparticles [61]. To further
understand the role of CO in determining the shape of Pt
nanoparticles, they performed calculations for change in the
surface energy (𝛾) between the {100} and {111} facets of Pt
before and after adsorption of amine and/or CO molecule
using spin-polarized density functional theory (DFT). It is
found that the surface energy of 𝛾

{100}
(0.90 eV/atom) is

higher than that of 𝛾
{111}

(0.64 eV/atom) before adsorption of
amine and CO molecule. Interestingly, however, the change
of surface energy is significantly altered after adsorption of
amine andCOmolecule; that is,Δ𝛾

{100}-{111} is−0.02 eV/atom.
This is because adsorption energy of amine and CO on Pt
{100} facets is highly increased compared to Pt {111} facets.
This indicates that the coadsorption of CO and amine on Pt
{100} results in the formation of Pt nanocubes.

2.3. Electrochemical and Photochemical Reduction Methods.
Electrochemical and photochemical reduction approaches,
needing external energy for reduction reactions, have the
enormous potential for the production of shape-controlled
Pt-based nanostructures as they have the advantages of
high yield of shape and size of Pt-based nanostructures,
reproducibility, and nontoxic reaction as well as detailed
understanding of formation mechanism in Pt-based nanos-
tructures.However, there still remain difficulties in large scale
production tomove towards a genuinely practical technology
for commercialization. In this regard, it is highly necessary to
seek for a novel and simple strategy to solve such a problem.

On the basis of the electrochemical reduction tech-
nique, many studies have been performed to achieve shape-
controlled Pt-based nanostructures using different electro-
chemical techniques, such as square-wave potential (pulse
potential), and constant reduction current/potential. Typi-
cally, in the electrochemical reduction method, for the syn-
thesis of shape-controlled Pt nanostructures the experimen-
tal setup consists of electrolyte and three electrodes, namely,
working, reference, and counter electrodes. Furthermore,
negative potential or current is applied for the reduction
reaction from metal ions to metal atoms. In particular,
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(a) (b)

(c) (d)

Figure 4: (a) TEM and (b) HR-TEM images of Pt nanocubes synthesized in the presence of PVP. (c) TEM image of Pt NPs synthesized in the
absence of PVP. (d) Schematic diagram illustrating the alcohol (i.e., formic acid, methanol, and ethanol) electrooxidation on Pt nanocubes.
Reproduced with permission from [31].

Wang and coworkers reported tetrahexahedral (THH) Pt
nanostructures enclosed by high-index facets with almost
{730} facets and some {210}, {310}, or {520} facets, as shown
in Figure 5(b) [62]. It was found that the particle size of THH
Pt nanostructures was increased with the reaction time, from
53 to 144 nm. In particular, they suggested that formation
mechanism of THH Pt nanostructures based on a square-
wave potential technique as follows (in Figure 5(a)). (1) At
high potential (1.20V), Pt atoms on surface of as-formed
Pt nanospheres can be oxidized and partially dissolved into
electrolyte, causing defects. (2) At low potential (−0.20∼
−0.10V), dissolved Pt ions diffuse to the surface of Pt crystal
and then are reduced to Pt atoms. Thus, Pt atoms on the
surface of low-index planes like a {111} facet with the high
coordination number (CN) are readily oxidized/dissolved by
the oxygen atom, which results in a structural change of
the Pt surface. In contrast, in the case of high index planes
with the low CN, the oxygen atoms preferentially adsorb on
the high index surface sites of Pt, hence maintaining the
unchanged surface structures. Also, Raoof and coworkers
showed that novel Pt nanostructures can be successfully
synthesized using a constant potential deposition method.
As-prepared Pt nanostructures exhibited a rod-like shape
with 1D structure due to the selectivity adsorption of oxygen
atoms of dextrin on the Pt surface [63].

Alternatively, the photochemical reduction method was
developed as a way to form noble metal nanoparticles by
reducing noble metal ions in the presence of semiconducting

(a)

(b)
[001]

200nm

Figure 5: (a) Scheme of electrochemical preparation of the THH
Pt NCs from nanospheres using square-wave potential. (b) SEM
images of the THH Pt nanocrystal. Reproduced with permission
from [62].

metal oxides (SMOs) such as TiO
2
and ZnO. The proposed

reductionmechanismofmetal (M) ions in the photochemical
reduction process in the presence of the SMO materials is as
follows:

SCM + ℎV 󳨀→ SCM (h+ + e−) (6)
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Figure 6: (a) Schematic illustration for procedures of ZnO@Pt deposited on graphene sheets (GS/ZnO@Pt) nanostructures using
photochemical reduction method. TEM images of GS/ZnO@Pt nanostructures prepared by difference amount of metal ions: (b) 380𝜇L
and (c) 580 𝜇L. Reproduced with permission from [64].

SCM (e−) +M+ 󳨀→ SCM +M (7)

SCM (2h+) + C
2
H
5
OH 󳨀→ SCM + 2H+ + CH

3
CHO (8)

As shown in the above reaction equations, when light
(energy, hv) is irradiated into a reactor, electron, and hole
pairs are generated in SMOs (equation (6)). The generated
electrons participate in the reduction of M ions (equation
(7)), while the holes are used to oxidize ethanol, which is an
additive agent (equation (8)).

Recently, Gu and coworkers developed an alternative
method for the synthesis of ZnO@Pt nanoparticles using
the UV irradiation of an ethanolic solution containing
H
2
PtCl
6
and ZnO deposited on graphene sheet as shown in

Figure 6 [64]. Also, it has been reported that variousM@TiO
2

nanoparticles (M = Ag, Pd, Au, Pt) can be synthesized
using the photochemical reduction process [65, 66]. Fur-
thermore, Huang and coworkers demonstrated the synthesis
of shape-controlled Au nanoparticles with six star using
photoirradiation of an ethanolic solution containing HAuCl

4

and TiO
2
sols without the addition of any other surface

capping molecules [67]. Thus, these findings suggest that
a photochemical reduction method based on the reduction
mechanism of metal ions can be one of the viable ways to
achieve Pt nanostructures with controlled size and shape.

For the further comparison of three different synthetic
methods, we summarize the advantages and disadvantages
of each synthesis approach for the shape-controlled Pt-based
nanostructures in Table 1.

3. Electrochemical Reactions of
Pt-Based Nanostructures in
Low-Temperature Fuel Cells

In general, low-temperature fuel cells, such as PEMFCs
and DAFCs, consist of two electrodes with one anode
and the other cathode separated by a membrane (so-called
MEA: membrane electrode assembly), gas diffusion layer,
and bipolar plate in an unit cell as shown in Figure 7. In
particular, DAFCs are also classified as direct formic acid,
direct methanol, and direct ethanol fuel cells according the
type of fuels.Their basic electrochemical reactions involve the
electrooxidation reaction of fuels taking place at the anode
and the electroreduction reaction of oxygen occurring at the
cathode. Therefore, to enhance electrochemical properties in
both electrodes, there have been many efforts to manipulate
the shape and composition of Pt-based nanostructures as
electrocatalysts for fuel cells. In this section, we will review
the fuel electrooxidation and oxygen electroreduction reac-
tions andwill discuss the detailed electrochemical correlation
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Table 1: Comparison of various synthetic methods.

Methods Advantages Disadvantages

Polyol
(1) Large quantity production
(2) High reproducibility
(3) Low temperature condition

(1) Moderate shape and size yield
(2) Difficult to remove capping agents

Thermal-decomposition
(1) Large quantity production
(2) High shape and size yield
(3) High reproducibility

(1) Difficult to remove capping agents
(2) High temperature condition
(3) Non-air condition
(4) Use toxic solvent and many additive agents

Photochemical (1) High shape and size yield
(2) Environmentally friendly

(1) Difficult for large quantity production
(2) Unclear growth mechanism
(3) Required many subdevices and part

Electrochemical
(1) High shape and size yield
(2) Environmentally friendly
(3) High reproducibility

(1) Difficult for large quantity production
(2) Required many subdevices and part

Fuel (H2) e− e− O2
or methanol
or ethanol
or formic acid

MEA

Membrane

Bipolar plate

Catalyst layer
Gas diffusion layer H2O

Anode Cathode
H+

H+

H+

Figure 7: Schematic illustration of low-temperature fuel cells.

between each reactant and Pt-based nanostructures associ-
ated with their morphology and composition.

3.1. Fuel Electrooxidation Reaction. In direct formic acid fuel
cells (DFAFCs), the anodic reaction considered as the most
important reaction is the formic acid oxidation reaction
(FAOR). It has been well known that Pt-based materials
are the most effective electrocatalyst for FAOR. However, Pt
and Pt-based catalysts suffer from the catalyst deactivation
process caused by CO poisoning, one of the most crucial
issues, as CO-species generated as a by-product of the
formic acid electrooxidation reaction disturb electrochemical
reactions by blocking active sites. There are two possible
routes for formic acid electrooxidation reactions as follows:

Direct pathway: HCOOH

󳨀→ HCOOad 󳨀→ CO
2
+H+ + e−

(9)

Indirect pathway: HCOOH

󳨀→ COad +H2O 󳨀→ CO
2
+ 2H+ + 2e−

(10)

Here it is noted that, in the direct oxidation pathway, the
formic acid is perfectly oxidized to carbon dioxide without
reaction intermediates, while, in the indirect pathway, the
CO-species are generated as intermediate species, which
strongly adsorb onto the Pt catalyst and hence resulting
in reducing the active surface area. Thus, recently, there
have been enormous efforts to overcome the CO poisoning-
induced catalyst deactivation process and to enhance the oxi-
dation rate of formic acid onmetallic catalysts by introducing
alloying Pt with other highly oxophilic metals and/or shape-
controlled Pt nanostructures to induce either electrooxida-
tion of adsorbed intermediate species or the direct oxidation
pathway [18, 22, 93].

Recently, it has been demonstrated that Pt- or Pd-based
catalysts for FAOR exhibit the enhanced electrochemical
properties such as lower on-set potential and higher current
density than other catalysts and that surface structure or lat-
tice parameter of catalysts plays amajor role for the enhanced
electrocatalytic activity due to the bridge-bonded adsorbed
formate on catalyst surface in the formic acid electrocatalytic
oxidation [94]. Based on these findings, we developed Pt-
Ni alloy nanostructures for formic acid electrooxidation by
using a thermal-decompositionmethod [95]. Note that as the
lattice parameter of Pt (3.939 Å) is larger than that of pure
Pd (3.893 Å), we selected Ni (3.523 Å) to modulate the lattice
parameter of Pt-based crystal similar to that of pure Pd as
shown in Figure 8(c). It was observed that the Pt-Ni alloy
nanostructures show dendritic shapes (Figure 8(a)) and that
the lattice parameter of Pt

3
Ni
1
alloy (3.898 Å) is similar to that

of pure Pd.Thus, as expected, the Pt
3
Ni
1
alloy nanodendrites

exhibited higher current density than commercial Pt at first
anodic peak, which means the complete oxidation of formic
acid, because of a well-defined alloy formation between Pt
and Ni as well as high surface area of dendritic shapes, as
shown in Figure 8(b).

Alternatively, it has been often reported that Pt-based
nanostructures with high-index facets can be considered
as efficient electrocatalysts for FAOR due to their exposed
surface structure with a large amount of atomic steps. Huang
and coworkers reported that concave polyhedral Pt nanocrys-
tals exhibit 5.57 times higher current density than that in
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commercial Pt due to higher density of atomic step on a {411}
high-index facet as shown in Figure 9 [96]. Furthermore,
Solla-Gullón and coworkers demonstrated comparison of
electrochemical properties betweenmodulated Pt nanostruc-
tures with different index facets [97]. It has been clearly found
that the FAOR activity is significantly dependent on facets of
Pt nanostructures, exhibiting quite different FAOR activity as
follows: {111} > mixed{100}–{111} > {100} facets.

Similar to FAOR, CO-poisoning, primarily for Pt catalyst
deactivation, is a crucial problem in the methanol oxida-
tion reaction (MOR). Thus, many recent efforts have been
focused on the deterioration of CO poisoning to enhance the
oxidation rate of methanol by alloying Pt with 2nd metallic
elements (M2nd) based on high oxophilic metals, such as Ru,
Pd,Ni, andCu, favorably adsorbing hydroxyl species and then
facilitating to oxide the adsorbed CO.Thus, it is expected that
Pt-based alloy nanostructures with 2nd metallic elements
can excellently enhance the electrocatalytic activity due to a
bifunctional effect between both Pt and 2nd metal forming
an alloy and the downshift of the d-band center of the
pure Pt electronic structure, resulting in oxidizing the CO-
species during the reactions.The bifunctional electrocatalytic
mechanism for CO-species oxidation is proposed as follows:

Pt + CH
3
OH 󳨀→ Pt–CO + 4H+ + 4e− (11)

M2nd +H
2
O 󳨀→ M2nd −OH +H+ + e− (12)

Pt–CO +M2nd −OH 󳨀→ Pt +M2nd + CO
2
+H+

+ e−
(13)

Alternatively, on the basis of bifunctional electrocatalyst
techniques, the development of shape-controlled nanoparti-
cles with high specific catalyst surface (i.e., dendritic, star, and
multipod shape) and/or exposed high active facets is also of
particular interest for the enhanced electrochemical activity
in MOR. Huang and coworker developed the synthesis of
hyperbranched PtRu nanostructures using seed-mediated
process at low-temperature for MOR [98]. It has been shown
that hyperbranched PtRu nanostructures exhibit a high
current density and fast on-set potential compared to pure Pt
and PtRu black due to their high surface area and presence of
Rumetals for bifunctional action. It was also clearly observed
that carbonaceous intermediates, such as CO, HCOO−, and
HCO−, were completely removed, indicating that methanol
can be perfectly oxidized during the reaction.Moreover, Yang
and coworkers developed Pt-Cu alloy concave nanocubes
with high-index facets for MOR [99]. They observed that
the Pt-Cu alloy concave nanocubes exhibit the enhanced
electrochemical properties, that is, 4.7 times higher current
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density, compared to commercial Pt, because the Cu atoms
in Pt-Cu alloy nanostructures might induce the downshift
of the d-band center of the pure Pt electronic structure and
bifunctional effects, causing the oxidation of CO-species.
Additionally, it is noteworthy that Pt {111} facets exhibit a
lower on-set potential and a higher current density compared
to other low-index facets inMOR.Thus, we investigated octa-
hedral Pt-Pd alloy nanostructures with dominantly exposed
{111} facets as shown in Figure 10(b) [41]. The octahedral Pt-
Pd alloy nanostructures with the elemental composition of
47.8 at% of Pt and 52.2 at% of Pd exhibited the enhanced
electrocatalytic activity, that is, higher maximum current
density and lower reverse current density, in comparisonwith
commercial Pt as shown in Figure 10(c), which is believed to
be attributed to the bifunctional effect based on Pd and the
octahedral shape enclosed by {111} facets.

In addition to methanol, ethanol as another candidate
source suitable for fuel cells has attracted attention, because
it can offer relatively high theoretical mass energy density
(8 kWhkg−1). However, the strong C-C bonds in ethanol
cause a high overpotential at an anode, resulting in cell per-
formance deterioration. Thus, researches have been focused
on the development of an effective catalyst with high elec-
trocatalytic activity in an ethanol oxidation reaction (EOR)
by modifying catalyst surface or employing other 2nd atoms
to break strong C-C bonds. For example, Rao and coworkers
showed that the cubic Pt-Rh alloy nanostructures have higher
ethanol electrocatalytic activity as indicated in Figure 10(a)
[100]. Based on electrochemical in situ FT-IR spectroscopic
measurements, they found that Pt

9
Rh
1
nanocubes showed

higher electrooxidation current density in EOR compared to
other nanocubes in Figure 11(b). However, interestingly, the
perfect oxidation reaction rate of the Pt

9
Rh
1
nanocubes in

ethanol was 0.5 times lower than that of Pt
1
Rh
1
nanocubes

(Figure 11(c)), because the Pt
9
Rh
1
nanocubes have not suffi-

cient active sites for breaking strong C-C bonds. On the other
hand, Pt

1
Rh
1
nanocubes with relatively large amounts of Rh

exhibited the improved conversion selectivity from ethanol to
CO
2
because Rh can help easily oxidize intermediate species

and breakC-Cbond of ethanol.This finding is consistentwith
results of other studies where Rh nanostructures can signifi-
cantly enhance the ethanol electrooxidation activity [101].

Here, please note that it is substantially difficult to directly
compare the differences in electrochemical performance
among previously reported results because shape-modified
Pt-based nanostructures for the diverse anodic reactions in
PEMFC have been developed by using various synthesis
approaches. To this end, in order to further introduce various
shape-controlled Pt-based electrocatalysts, we summarize
various synthesis approaches applied for enhanced elec-
trochemical properties in typical alcohol electrooxidation
reactions in Table 2.

3.2. Oxygen Electroreduction Reaction of Pt-Based Nanos-
tructures. The ORR is a fundamental and pivotal reaction
occurring at the cathode in low temperature fuel cells where
molecular oxygen adsorbs to the catalyst surface and is
reduced to water through the following two pathways:

Four-electron pathway: O
2
+ 4H+ + 4e− 󳨀→ 2H

2
O

E∘ = 1.23V
(14)

Two-electron pathway: O
2
+ 2H+ + 2e− 󳨀→ H

2
O
2

E∘ = 0.70V
(15)

As shown in Figure 12, the ORR requires a high potential
(1.23 V) for the direct four-electron pathway and usually uses
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Figure 10: (a) Schematic diagram illustrating the formation of octahedral Pt-Pd alloy nanostructures prepared by glycerol as a reducing
agent. (b) HR-TEM images of octahedral Pt-Pd alloy nanostructure. The inset indicates the FFT pattern. (c) CVs of octahedral Pt-Pd alloy
nanostructure and commercial Pt electrocatalysts in MOR. Reproduced with permission from [41].

Pt-based alloy catalysts as the most effective catalysts for
oxygen electroreduction [102]. In particular, however, there
are critical several problems associated with the ORR in
low temperature fuel cells, which need to be solved, such
as kinetic limitations for oxygen diffusion process and its
low long-term stability for oxygen electroreduction. Thus, in
order to address these issues, the critical factors, affecting
the electrocatalytic properties of Pt-based catalysts, should be
considered and identified.

For the enhanced electrochemical activity in the ORR,
various Pt-based catalysts with alloy, shape-controlled, and
core-shell nanostructures have been reported as shown in
Figure 13(a) [103]. Mayrhofer and Arenz showed that nanos-
tructured alloy Pt

3
M
1
catalysts can improve the electrocat-

alytic activity in the ORR due to their modified electronic
and surface structures according to the 2ndmetallicmaterials
selected in Pt structures in Figure 13(b) [104]. In addition,
it has been reported that Pt

𝑥
M
𝑦
(𝑥 > 𝑦, M = Pd, Ir, Co,

Fe, Ni, Y, and Sc) alloy catalysts have greater ORR activity

and thermodynamically more stable state in comparison
with different elemental compositions of Pt

𝑥
M
𝑦
(𝑥 ≤ 𝑦)

or pure Pt catalysts. Moreover, Stamenkovic and coworkers
demonstrated that the {111} surface facet of Pt single crystal
shows the improved electrochemical activity for ORR com-
pared to the {100} surface facet in an acid electrolyte by
utilizing shape-controlled Pt nanostructures [105]. We also
developed the synthesis of octahedral Pt

𝑥
Pd
𝑦
nanostructures

with various compositions (i.e., Pt
3
Pd
1
, Pt
1
Pd
1
, and Pt

1
Pd
3
),

but having dominantly exposed {111} facets, as catalysts for
ORRs as indicated in Figure 14(a) [106]. Interestingly, among
them, it was found that the octahedral Pt

3
Pd
1
nanostructure

shows the significantly enhanced electrochemical catalytic
activity, such as the increased specific area by 2.35 times
and enhanced mass by 1.88 times activity at 0.55V, and
the most stable electrochemical properties in comparison
with commercial Pt in Figure 14(b) due to the octahedral
shape with dominant {111} facets and favorable elemental
composition.
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Figure 11: (a) HR-TEM image of cubic Pt-Rh nanostructure. (b) CV curves for electrooxidation of formic acid. (c) Integrated band intensities
of CO

2
and CH

3
COOH in FTIR spectra, and the ratio between integrated intensity with the total oxidation pathway (CO

2
) and intensity

associated with the partial oxidation pathway (CH
3
COOH). Reproduced with permission from [100].

Furthermore, Markovic and coworkers have demon-
strated that Pt-Ni alloy nanostructures can be an effective
electrocatalyst for the ORR. They showed that Pt

3
Ni
1
{111}

facet is 10 and 90 times more electrochemically active than
Pt {111} facets and commercial Pt in ORRs, respectively, due
to their unusual electronic structures for the downshift of d-
band center as well as arrangement of surface atoms in the
near-surface region in crystal structures [105]. Based on their
demonstration of nanostructured Pt-Ni alloy catalysts, many
researches have been reported on various nanostructured

Pt-Ni alloys. Xia and coworkers demonstrated that octa-
hedral Pt

2.5
Ni
1

nanostructures exhibited highly specific
mass activity compared to spherical Pt

3
Ni and commercial

Pt, because they have the clean catalysts surface and the
mostly exposed {111} facets [107]. More recently, in order
to maximize surface area, Chen and coworker suggested
highly crystalline Pt

3
Ni
1
nanoframes with 3D structure [108].

They clearly observed that Pt
3
Ni
1
nanoframes significantly

enhanced the electrocatalytic mass activity with a world
record of 5.7 Amg−1Pt at 0.9 V (versus RHE) in the ORR
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Figure 13: (a) Schematic illustration of research trend of electrocatalysts for ORR. Reproduced with permission from [103]. (b) A three-
dimensional “volcano” schematic illustration of Pt-based metal-alloy catalysts in ORR. Reproduced with permission from [104].

due to their high surface-to-volume ratio, 3D surface molec-
ular accessibility for frame structure, and the modulated
electronic structure for Pt-Ni alloying phase as shown in
Figure 15.

Alternatively, on the basis of expectations that {ℎ𝑘1} facets
(ℎ and/or 𝑘 is greater than one) can improve the electrochem-
ical ORR activities in comparison with the low-index facets,
other strategies based on the surface structure modification
of Pt nanostructures have been developed to enhance the
electrochemical ORR activity. Wang and coworkers demon-
strated the synthesis of Pt high concave cubic nanostructures
with high-index facets and their utilization for ORR [109].
They showed that the specific mass activity of the Pt concave
cubic nanostructures was about 0.71 Amg−1Pt at 0.9 V (versus
RHE) inORR, improved by 2.8 times higher than that of com-
mercial Pt. Additionally, Lim and coworkers also reported the
Pd-Pt bimetallic nanodendrites as an ORR electrocatalyst. It
was shown that Pd-Pt bimetallic nanodendrites exhibited 2.5
times higher specific mass activity compared to commercial
Pt due to their relatively higher surface area resulting from
dendritic structures and the exposed {311} facets on branch
surface as an active site for ORR [110].

In addition to the development of nanostructured cat-
alysts based on single metal and alloy, many researches

have focused on the development of the Pt-based core-shell
nanostructures as attractive structures for electrocatalysts in
ORR because these structures with designed compositions
and morphologies can efficiently reduce the cost of fuel cell
manufacturing by significantly reducing the overall amount
of Pt required [111–113]. Specially, it would be desirable to
reduce the amount of Pt at the cathode because the cathode
requires 2∼3 times higher Pt loading than required at the
anode due to the low kinetic reduction reaction rate in
comparison with fuel oxidation reaction. Furthermore, both
the exposed surface area and active site density of Pt-based
electrocatalysts are very important since the electrochemical
reaction in a fuel cell actually occurs on the surface of
catalysts. For this reason, many studies have been focused
on the control over the shell thickness and composition of
Pt-based core-shell nanostructures with inexpensive metal
elements as the core and Pt as the shell to enhance specific
mass activity in ORR [114]. Wang and coworkers reported
that the Cu@Pt core-shell nanoparticles prepared using a
galvanic displacement method have approximately 2 times
higher specific mass activity than that of commercial Pt/C
at 0.85V (versus NHE) [115]. Additionally, many researches
have been reported on a core@Pt-based alloy shell nanos-
tructure in order to increase the catalytic activity and the
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Figure 14: (a) TEM images of the octahedral Pt
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nanostructures and commercial Pt. Reproduced with permission from [106].

Table 3: Summary of various Pt-based nanostructures with enhanced electrochemical properties in ORR.

Material/shape Synthesis method Experimental factor 𝐼
a, A/mg−1Pt 𝐸1/2

b, V Reference
Pt-Pd/core-shell Polyol Shell thickness 0.18 0.895 [83]
Pd-Pt/core-shell Polyol Seed-mediated growth ∼0.2 ∼0.87 [84]
Pt-Pd/hollow and dendrite Polyol Concentration of reductant ∼0.76 ∼0.92 [85]
Pt-Co/truncated octahedron Thermal-decomposition Reaction time 0.52 ∼0.85 [86]
Pt-Ni/truncated octahedron Thermal-decomposition Alkane chain length of capping agent 0.53 ∼0.9 [28]
Pt-Ni/icosahedron Thermal-decomposition Presence of CO gas 0.62 0.9 [29]
Pt-Ni/octahedron Thermal-decomposition Electrochemical activation ∼1.7 ∼0.92 [30]
Pt-Ni/octahedron Thermal-decomposition Reaction time 1.45 ∼0.92 [87]
Pt-Co/cube Thermal-decomposition Composition ratio 0.434 ∼0.85 [21]
Pt-Fe-Cu/rod Thermal-decomposition Electrochemical etching — 0.557c [33]
Pt-Fe/wire Thermal-decomposition Composition ratio 0.84 0.92 [88]
Pt-Fe-Pd/core-shell wire Thermal-decomposition Seed-mediated growth — ∼0.55c [89]
Pt/mesoporous Electrochemical deposition Silica template 0.12 0.866 [90]
PtCuCoNi/tube Electrochemical deposition AAO template 0.19 0.87 [91]
Pt/porous dendrite Replacement reaction Replacement reaction 0.21 ∼0.93 [92]
aSpecific mass current density at 0.9 V and bhalf-wave potential in ORR polarization curves based on V versus RHE. cHalf-wave potential (versus Ag/AgCl)
in ORR polarization curves.
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specificmass activity [116, 117]. In recent, Choi and coworkers
reported that octahedral Pd@Pt-Ni core-shell nanostruc-
tures can be synthesized by seeding-mediated and thermal-
decomposition methods and that an ORR mass activity
(2.5 Amg−1) and a specific activity (2.7mA cm−2) are 12.5-
fold and 14-fold higher than that of commercial Pt/C at 0.9 V
(versus RHE), respectively [118]. Mazumder and cowork-
ers also demonstrated the synthesis of the shell thickness-
controlled Pd@FePt core-shell nanostructures with 1∼3 nm
shell thickness for the enhanced electrochemical activity
and stability in ORR [119]. They reported that a Pd@FePt
nanostructure with 1 nm shell thickness showed 12 times
improved specific mass activity compared to commercial Pt
due to the thinner alloy FePt shell with higher ORR activity.
In order to further provide recent progress in Pt-based
electrocatalyst technology, various Pt-based nanostructures

with the enhanced catalytic activity and related synthesis
approaches are summarized in the Table 3.

4. Conclusions

In summary, we present snapshots of recent research carried
out on Pt-based electrocatalysts technology for high perfor-
mance low-temperature fuel cells, particularly focusing on
the recent issues and progress in the development of vari-
ous synthetic approaches for Pt-based nanostructures with
controlled shapes and their electrochemical characteristics of
both electrodes. In addition,we describe fundamental aspects
of electrochemical reactions and mechanism associated with
the shape, dimension, faceted morphology, and composition
of nanostructured Pt-based catalyst materials, significantly
affecting their electrocatalytic activity. It is expected that this
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review will give insights not only into understanding the
basic electrochemical mechanism and kinetics of both ele-
ctrode reactions in fuel cells, but also into developing a gen-
uinely practical electrocatalysts technology for fuel cell com-
mercialization.
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