34 research outputs found

    Enhancing Nutrient Use Efficiencies in Rainfed Systems

    Get PDF
    Successful and sustained crop production to feed burgeoning population in rainfed areas, facing soil fertility-related degradation through low and imbalanced amounts of nutrients, requires regular nutrient inputs through biological, organic or inorganic sources of fertilizers. Intensification of fertilizer (all forms) use has given rise to concerns about efficiency of nutrient use, primarily driven by economic and environmental considerations. Inefficient nutrient use is a key factor pushing up the cost of cultivation and pulling down the profitability in farming while putting at stake the sustainability of rainfed farming systems. Nutrient use efficiency implies more produce per unit of nutrient applied; therefore, any soil-water-crop management practices that promote crop productivity at same level of fertilizer use are expected to enhance nutrient use efficiency. Pervasive nutrient depletion and imbalances in rainfed soils are primarily responsible for decreasing yields and declining response to applied macronutrient fertilizers. Studies have indicated soil test-based balanced fertilization an important driver for enhancing yields and improving nutrient use efficiency in terms of uptake, utilization and use efficiency for grain yield and harvest index indicating improved grain nutritional quality. Recycling of on-farm wastes is a big opportunity to cut use and cost of chemical fertilizers while getting higher yield levels at same macronutrient levels. Best management practices like adoption of high-yielding and nutrient-efficient cultivars, landform management for soil structure and health, checking pathways of nutrient losses or reversing nutrient losses through management at watershed scale and other holistic crop management practices have great scope to result in enhancing nutrient and resource use efficiency through higher yields. The best practices have been found to promote soil organic carbon storage that is critical for optimum soil processes and improve soil health and enhance nutrient use efficiency for sustainable intensification in the rainfed systems

    Multi-Temporal and Spectral Analysis of High-Resolution Hyperspectral Airborne Imagery for Precision Agriculture: Assessment of Wheat Grain Yield and Grain Protein Content

    Get PDF
    This study evaluates the potential of high resolution hyperspectral airborne imagery to capture within-field variability of durum wheat grain yield (GY) and grain protein content (GPC) in two commercial fields in the Yaqui Valley (northwestern Mexico). Through a weekly/biweekly airborne flight campaign, we acquired 10 mosaics with a micro-hyperspectral Vis-NIR imaging sensor ranging from 400-850 nanometres (nm). Just before harvest, 114 georeferenced grain samples were obtained manually. Using spectral exploratory analysis, we calculated narrow-band physiological spectral indices-normalized difference spectral index (NDSI) and ratio spectral index (RSI)-from every single hyperspectral mosaic using complete two by two combinations of wavelengths. We applied two methods for the multi-temporal hyperspectral exploratory analysis: (a) Temporal Principal Component Analysis (tPCA) on wavelengths across all images and (b) the integration of vegetation indices over time based on area under the curve (AUC) calculations. For GY, the best R2 (0.32) were found using both the spectral (NDSI-Ri, 750 to 840 nm and Rj, ±720-736 nm) and the multi-temporal AUC exploratory analysis (EVI and OSAVI through AUC) methods. For GPC, all exploratory analysis methods tested revealed (a) a low to very low coefficient of determination (R2 ≤ 0.21), (b) a relatively low overall prediction error (RMSE: 0.45-0.49%), compared to results from other literature studies, and (c) that the spectral exploratory analysis approach is slightly better than the multi-temporal approaches, with early season NDSI of 700 with 574 nm and late season NDSI of 707 with 523 nm as the best indicators. Using residual maps from the regression analyses of NDSIs and GPC, we visualized GPC within-field variability and showed that up to 75% of the field area could be mapped with relatively good predictability (residual class: -0.25 to 0.25%), therefore showing the potential of remote sensing imagery to capture the within-field variation of GPC under conventional agricultural practices

    Multi-temporal and spectral analysis of high-resolution hyperspectral airborne imagery for precision agriculture: Assessment of wheat grain yield and grain protein content

    No full text
    This study evaluates the potential of high resolution hyperspectral airborne imagery to capture within-field variability of durum wheat grain yield (GY) and grain protein content (GPC) in two commercial fields in the Yaqui Valley (northwestern Mexico). Through a weekly/biweekly airborne flight campaign, we acquired 10 mosaics with a micro-hyperspectral Vis-NIR imaging sensor ranging from 400-850 nanometres (nm). Just before harvest, 114 georeferenced grain samples were obtained manually. Using spectral exploratory analysis, we calculated narrow-band physiological spectral indices-normalized difference spectral index (NDSI) and ratio spectral index (RSI)-from every single hyperspectral mosaic using complete two by two combinations of wavelengths. We applied two methods for the multi-temporal hyperspectral exploratory analysis: (a) Temporal Principal Component Analysis (tPCA) on wavelengths across all images and (b) the integration of vegetation indices over time based on area under the curve (AUC) calculations. For GY, the best R² (0.32) were found using both the spectral (NDSI-Ri, 750 to 840 nm and Rj, ±720-736 nm) and the multi-temporal AUC exploratory analysis (EVI and OSAVI through AUC) methods. For GPC, all exploratory analysis methods tested revealed (a) a low to very low coefficient of determination (R² ≤ 0.21), (b) a relatively low overall prediction error (RMSE: 0.45-0.49%), compared to results from other literature studies, and (c) that the spectral exploratory analysis approach is slightly better than the multi-temporal approaches, with early season NDSI of 700 with 574 nm and late season NDSI of 707 with 523 nm as the best indicators. Using residual maps from the regression analyses of NDSIs and GPC, we visualized GPC within-field variability and showed that up to 75% of the field area could be mapped with relatively good predictability (residual class: -0.25 to 0.25%), therefore showing the potential of remote sensing imagery to capture the within-field variation of GPC under conventional agricultural practices

    High-resolution airborne hyperspectral imagery for assessing yield, biomass, grain N concentration, and N output in spring wheat

    No full text
    Remote sensing allows fast assessment of crop monitoring over large areas; however, questions regarding uncertainty in crop parameter prediction and application to nitrogen (N) fertilization remain open. The objective of this study was to optimize of remote sensing spectral information for its application to grain yield (GY), biomass, grain N concentration (GNC), and N output assessment, and decision making on spring wheat fertilization. Spring wheat (Triticum turgidum L.) field experiments testing two tillage treatments, two irrigation levels and six N treatments were conducted in Northwest Mexico over four consecutive years. Hyperspectral images were acquired through 27 airborne flight campaigns. At harvest, GY, biomass, GNC and N output were determined. Spectral exploratory analysis was used to identify the best wavelength combinations, the most suitable vegetation indices (VIs) and the best growth stages to assess the agronomic variables. The relationship between the spectral information and the agronomic measurements was evaluated by the coefficient of determination (R²) and the root mean square error (RMSE). The ability of the indices to guide fertilizer recommendation was assessed through an error analysis based on the N sufficiency index. GY was better assessed from the end of flowering to the early milk stage by VIs based on the combination of bands from near infrared radiation/visible and from near infrared radiation/red-edge regions (R² > 0.6; RMSE 0.7; RMSE < 9 kg N ha‾¹). The GNC was better estimated by VIs combining bands in near infrared radiation/red-edge at early milk, but with great variability among the years studied. Some VIs were promising for guiding fertilizer recommendation for increasing GNC, but there was not a single index providing reliable recommendations every year. This study highlights the potential of remote sensing imagery to assess GY and N output in spring wheat, but the identification of GNC responsive sites needs to be improved
    corecore