8 research outputs found
Atmospheric chemistry on Uranus and Neptune
Comparatively little is known about atmospheric chemistry on Uranus and
Neptune, because remote spectral observations of these cold, distant ``Ice
Giants'' are challenging, and each planet has only been visited by a single
spacecraft during brief flybys in the 1980s. Thermochemical equilibrium is
expected to control the composition in the deeper, hotter regions of the
atmosphere on both planets, but disequilibrium chemical processes such as
transport-induced quenching and photochemistry alter the composition in the
upper atmospheric regions that can be probed remotely. Surprising disparities
in the abundance of disequilibrium chemical products between the two planets
point to significant differences in atmospheric transport. The atmospheric
composition of Uranus and Neptune can provide critical clues for unravelling
details of planet formation and evolution, but only if it is fully understood
how and why atmospheric constituents vary in a three-dimensional sense and how
material coming in from outside the planet affects observed abundances. Future
mission planning should take into account the key outstanding questions that
remain unanswered about atmospheric chemistry on Uranus and Neptune,
particularly those questions that pertain to planet formation and evolution,
and those that address the complex, coupled atmospheric processes that operate
on Ice Giants within our solar system and beyond
Jupiter's auroral-related stratospheric heating and chemistry III: Abundances of C2H4, CH3C2H, C4H2 and C6H6 from Voyager-IRIS and Cassini-CIRS
We present an analysis of Voyager-1-IRIS and Cassini-CIRS spectra of Jupiter's high latitudes acquired during the spacecrafts' respective flybys in November 1979 and January 2001. We performed a forward-model analysis in order to derive the abundances of ethylene (C 2 H 4 ), methylacetylene (CH 3 C 2 H), diacetylene (C 4 H 2 ) and benzene (C 6 H 6 ) in Jupiter's northern and southern auroral regions. We also compared these abundances to: 1) lower-latitude abundances predicted by the Moses et al. (2005) ‘Model A’ photochemical model, henceforth ‘Moses 2005A’, and 2) abundances derived at non-auroral longitudes in the same latitude band. This paper serves as an extension of Sinclair et al. (2017b), where we retrieved the vertical profiles of temperature, C 2 H 2 and C 2 H 6 from similar datasets. We find that an enrichment of C 2 H 4 , CH 3 C 2 H and C 6 H 6 with respect to lower-latitude abundances is required to fit the spectra of Jupiter's northern and southern auroral regions. For example, for CIRS 0.5 cm −1 spectra of Jupiter's southern auroral region, scale factor enrichments of 6.40 −1.15+1.30 and 9.60 −3.67+3.98 are required with respect to the Moses 2005A vertical profiles of C 2 H 4 and C 6 H 6 , respectively, in order to fit the spectral emission features of these species at ∼950 and ∼674 cm −1 . Similarly, in order to fit the CIRS 2.5 cm −1 spectra of Jupiter's northern auroral region, scale factor enrichments of 1.60 −0.21+0.37 , 3.40 −1.69+1.89 and 15.00 −4.02+4.01 with respect to the Moses 2005A vertical profiles of C 2 H 4 , CH 3 C 2 H and C 6 H 6 were required, respectively. Outside of Jupiter's auroral region in the same latitude bands, only upper-limit abundances of C 2 H 4 , CH 3 C 2 H and C 6 H 6 could be determined due to the limited sensitivity of the measurements, the weaker emission features combined with cooler stratospheric temperatures (and therefore decreased thermal emission) of these regions. Nevertheless, for a subset of the observations, derived abundances of C 2 H 4 and C 6 H 6 in Jupiter's auroral regions were higher (by 1 σ) with respect to upper-limit abundances derived outside the auroral region in the same latitude band. This is suggestive that the influx of energetic ions and electrons from the Jovian magnetosphere and external solar-wind environment into the neutral atmosphere in Jupiter's auroral regions drives enhanced ion-related chemistry, as has also been inferred from Cassini observations of Saturn's high latitudes (Fletcher et al., 2018; Guerlet et al., 2015; Koskinen et al., 2016). We were not able to constrain the abundance of C 4 H 2 in either Jupiter's auroral regions or non-auroral regions due to its lower (predicted) abundance and weaker emission feature. Thus, only upper-limit abundances were derived in both locations. From CIRS 2.5 cm −1 spectra, the upper limit abundance of C 4 H 2 corresponds to a scale factor enhancement of 45.6 and 23.8 with respect to the Moses 2005A vertical profile in Jupiter's non-auroral and auroral regions
Saturn's Atmosphere in Northern Summer Revealed by JWST/MIRI
Saturn's northern summertime hemisphere was mapped by JWST/Mid-Infrared Instrument (4.9–27.9 µm) in November 2022, tracing the seasonal evolution of temperatures, aerosols, and chemical species in the 5 years since the end of the Cassini mission. The spectral region between reflected sunlight and thermal emission (5.1–6.8 µm) is mapped for the first time, enabling retrievals of phosphine, ammonia, and water, alongside a system of two aerosol layers (an upper tropospheric haze p < 0.3 bars, and a deeper cloud layer at 1–2 bars). Ammonia displays substantial equatorial enrichment, suggesting similar dynamical processes to those found in Jupiter's equatorial zone. Saturn's North Polar Stratospheric Vortex has warmed since 2017, entrained by westward winds at p < 10 mbar, and exhibits localized enhancements in several hydrocarbons. The strongest latitudinal temperature gradients are co-located with the peaks of the zonal winds, implying wind decay with altitude. Reflectivity contrasts at 5–6 µm compare favorably with albedo contrasts observed by Hubble, and several discrete vortices are observed. A warm equatorial stratospheric band in 2022 is not consistent with a 15-year repeatability for the equatorial oscillation. A stacked system of windshear zones dominates Saturn's equatorial stratosphere, and implies a westward equatorial jet near 1–5 mbar at this epoch. Lower stratospheric temperatures, and local minima in the distributions of several hydrocarbons, imply low-latitude upwelling and a reversal of Saturn's interhemispheric circulation since equinox. Latitudinal distributions of stratospheric ethylene, benzene, methyl, and carbon dioxide are presented for the first time, and we report the first detection of propane bands in the 8–11 µm region.</p
Mid-infrared spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 1. Determination of the mean temperature structure of the upper troposphere and stratosphere
On 2007 December 16–17, spectra were acquired of the disk of Uranus by the Spitzer Infrared Spectrometer (IRS), ten days after the planet’s equinox, when its equator was close to the sub-Earth point. This spectrum provides the highest-resolution broad-band spectrum ever obtained for Uranus from space, allowing a determination of the disk-averaged temperature and molecule composition to a greater degree of accuracy than ever before. The temperature profiles derived from the Voyager radio occultation experiment by Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987–15001) and revisions suggested by Sromovsky et al. (Sromovsky, L.A., Fry, P.A., Kim, J.H. [2011]. Icarus 215, 292–312) that match these data best are those that assume a high abundance of methane in the deep atmosphere. However, none of these model profiles provides a satisfactory fit over the full spectral range sampled. This result could be the result of spatial differences between global and low-latitudinal regions, changes in time, missing continuum opacity sources such as stratospheric hazes or unknown tropospheric constituents, or undiagnosed systematic problems with either the Voyager radio-occultation or the Spitzer IRS data sets. The spectrum is compatible with the stratospheric temperatures derived from the Voyager ultraviolet occultations measurements by Herbert et al. (Herbert, F. et al. [1987]. J. Geophys. Res. 92, 15093–15109), but it is incompatible with the hot stratospheric temperatures derived from the same data by Stevens et al. (Stevens, M.H., Strobel, D.F., Herbert, F.H. [1993]. Icarus 101, 45–63). Thermospheric temperatures determined from the analysis of the observed H2 quadrupole emission features are colder than those derived by Herbert et al. at pressures less than ∼1 μbar. Extrapolation of the nominal model spectrum to far-infrared through millimeter wavelengths shows that the spectrum arising solely from H2 collision-induced absorption is too warm to reproduce observations between wavelengths of 0.8 and 3.3 mm. Adding an additional absorber such as H2S provides a reasonable match to the spectrum, although a unique identification of the responsible absorber is not yet possible with available data. An immediate practical use for the spectrum resulting from this model is to establish a high-precision continuum flux model for use as an absolute radiometric standard for future astronomical observations.</ul
Independent evolution of stratospheric temperatures in Jupiter’s northern and southern auroral regions from 2014 to 2016
We present retrievals of the vertical temperature profile of Jupiter's high latitudes from Infrared Telescope Facility‐Texas Echelon Cross Echelle Spectrograph measurements acquired on 10–11 December 2014 and 30 April to 1 May 2016. Over this time range, 1 mbar temperature in Jupiter's northern and southern auroral regions exhibited independent evolution. The northern auroral hot spot exhibited negligible net change in temperature at 1 mbar and its longitudinal position remained fixed at 180°W (System III), whereas the southern auroral hot spot exhibited a net increase in temperature of 11.1 ± 5.2 K at 0.98 mbar and its longitudinal orientation moved west by approximately 30°. This southern auroral stratospheric temperature increase might be related to (1) near‐contemporaneous brightening of the southern auroral ultraviolet/near‐infrared H+3 emission measured by the Juno spacecraft and (2) an increase in the solar dynamical pressure in the preceding 3 days. We therefore suggest that 1 mbar temperature in the southern auroral region might be modified by higher‐energy charged particle precipitation
Spatial structure in Neptune's 7.90-μm stratospheric CH4 emission, as measured by VLT-VISIR
We present a comparison of VLT-VISIR images and Keck-NIRC2 images of Neptune, which highlight the coupling between its troposphere and stratosphere. VLT-VISIR images were obtained on September 16th 2008 (UT) at 7.90 μm and 12.27 μm, which are primarily sensitive to 1-mbar CH4 and C2H6 emission, respectively. NIRC2 images in the H band were obtained on October 5th, 6th and 9th 2008 (UT) and sense clouds and haze in the upper troposphere and lower stratosphere (from approximately 600 to 20 mbar). At 7.90 μm, we observe enhancements of CH4 emission in latitude bands centered at approximately 25∘S and 48∘S (planetocentric). Within these zonal bands, tentative detections (<2σ) of discrete hotspots of CH4 emission are also evident at 24∘S, 181∘W and 42∘S, 170∘W. The longitudinal-mean enhancements in the CH4 emission are also latitudinally-coincident with bands of bright (presumably CH4 ice) clouds in the upper troposphere and lower stratosphere evidenced in the H-band images. This suggests the Neptunian troposphere and stratosphere are coupled in these specific regions. This could be in the form of (1) ‘overshoot’ of strong, upwelling plumes and advection of CH4 ice into the lower stratosphere, which subsequently sublimates into CH4 gas and/or (2) generation of waves by plumes impinging from the tropopause below, which impart their energy and heat the lower stratosphere. We favor the former process since there is no evidence of similar smaller-scale morphology in the C2H6 emission, which probes a similar atmospheric level. However, we cannot exclude temperature variations as the source of the morphology observed in CH4 emission. Future, near-infrared imaging of Neptune performed near-simultaneously with future mid-infrared spectral observations of Neptune by the James Webb Space Telescope would allow the coupling of Neptune's troposphere and stratosphere to be confirmed and studied in greater detail
A brightening of Jupiter’s auroral 7.8-μm CH4 emission during a solar-wind compression
Enhanced mid-infrared emission from CH 4 and other stratospheric hydrocarbons has been observed coincident with Jupiter’s ultraviolet auroral emission 1–3 . This suggests that auroral processes and the neutral stratosphere of Jupiter are coupled; however, the exact nature of this coupling is unknown. Here we present a time series of Subaru-COMICS images of Jupiter measured at a wavelength of 7.80 μm on 11–14 January, 4–5 February and 17–20 May 2017. These data show that both the morphology and magnitude of the auroral CH 4 emission vary on daily timescales in relation to external solar-wind conditions. The southern auroral CH 4 emission increased in brightness temperature by about 3.8 K between 15:50 ut, 11 January and 12:57 ut, 12 January, during a predicted solar-wind compression. During the same compression, the northern auroral emission exhibited a duskside brightening, which mimics the morphology observed in the ultraviolet auroral emission during periods of enhanced solar-wind pressure 4,5 . These results suggest that changes in external solar-wind conditions perturb the Jovian magnetosphere in such a way that energetic particles are accelerated into the planet’s atmosphere, deposit their energy as deep as the neutral stratosphere, and modify the thermal structure, the abundance of CH 4 or the population of energy states of CH 4 . We also find that the northern and southern auroral CH 4 emission evolved independently between the January, February and May images, as has been observed at X-ray wavelengths over shorter timescales 6 and at mid-infrared wavelengths over longer timescales 7
EChO
A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO—the Exoplanet Characterisation Observatory—is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO’s configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region—from the visible to the mid-infrared—to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures T ₑq up to 2,000 K, to those of a few Earth masses, with T ₑq 3c 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0.4–16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1.5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to 3c45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4–5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework