1,760 research outputs found
Aging Shapes the Population-Mean and -Dispersion of Gene Expression in Human Brains
Human aging is associated with cognitive decline and an increased risk of neurodegenerative disease. Our objective for this study was to evaluate potential relationships between age and variation in gene expression across different regions of the brain. We analyzed the Genotype-Tissue Expression (GTEx) data from 54 to 101 tissue samples across 13 brain regions in post-mortem donors of European descent aged between 20 and 70 years at death. After accounting for the effects of covariates and hidden confounding factors, we identified 1446 protein-coding genes whose expression in one or more brain regions is correlated with chronological age at a false discovery rate of 5%. These genes are involved in various biological processes including apoptosis, mRNA splicing, amino acid biosynthesis, and neurotransmitter transport. The distribution of these genes among brain regions is uneven, suggesting variable regional responses to aging. We also found that the aging response of many genes, e.g., TP37 and C1QA, depends on individuals' genotypic backgrounds. Finally, using dispersion-specific analysis, we identified genes such as IL7R, MS4A4E, and TERF1/TERF2 whose expressions are differentially dispersed by aging, i.e., variances differ between age groups. Our results demonstrate that age-related gene expression is brain region-specific, genotype-dependent, and associated with both mean and dispersion changes. Our findings provide a foundation for more sophisticated gene expression modeling in the studies of age-related neurodegenerative diseases
Structure of hadron resonances with a nearby zero of the amplitude
We discuss the relation between the analytic structure of the scattering
amplitude and the origin of an eigenstate represented by a pole of the
amplitude.If the eigenstate is not dynamically generated by the interaction in
the channel of interest, the residue of the pole vanishes in the zero coupling
limit. Based on the topological nature of the phase of the scattering
amplitude, we show that the pole must encounter with the
Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the
dynamical component of the eigenstate is small if a CDD zero exists near the
eigenstate pole. We show that the line shape of the resonance is distorted from
the Breit-Wigner form as an observable consequence of the nearby CDD zero.
Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma
amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio
Structure and microstructure evolution of Al-Mg-Si alloy processed by equal-channel angular pressing
An ultrafine grained Al–Mg–Si alloy was prepared by severe plastic deformation using the equal-channel angular pressing (ECAP) method. Samples were ECAPed through a die with an inner angle of F = 90° and outer arc of curvature of ¿ = 37° from 1 to 12 ECAP passes at room temperature following route Bc. To analyze the evolution of the microstructure at increasing ECAP passes, X-ray diffraction and electron backscatter diffraction analyses were carried out. The results revealed two distinct processing regimes, namely (i) from 1 to 5 passes, the microstructure evolved from elongated grains and sub-grains to a rather equiaxed array of ultrafine grains and (ii) from 5 to 12 passes where no change in the morphology and average grain size was noticed. In the overall behavior, the boundary misorientation angle and the fraction of high-angle boundaries increase rapidly up to 5 passes and at a lower rate from 5 to 12 passes. The crystallite size decreased down to about 45 nm with the increase in deformation. The influence of deformation on precipitate evolution in the Al–Mg–Si alloy was also studied by differential scanning calorimetry. A significant decrease in the peak temperature associated to the 50% of recrystallization was observed at increasing ECAP passes.Peer ReviewedPreprin
Recommended from our members
Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments.
Searches for electron antineutrino, muon neutrino, and muon antineutrino disappearance driven by sterile neutrino mixing have been carried out by the Daya Bay and MINOS+ collaborations. This Letter presents the combined results of these searches, along with exclusion results from the Bugey-3 reactor experiment, framed in a minimally extended four-neutrino scenario. Significantly improved constraints on the θ_{μe} mixing angle are derived that constitute the most constraining limits to date over five orders of magnitude in the mass-squared splitting Δm_{41}^{2}, excluding the 90% C.L. sterile-neutrino parameter space allowed by the LSND and MiniBooNE observations at 90% CL_{s} for Δm_{41}^{2}<13 eV^{2}. Furthermore, the LSND and MiniBooNE 99% C.L. allowed regions are excluded at 99% CL_{s} for Δm_{41}^{2}<1.6 eV^{2}
New measurement of via neutron capture on hydrogen at Daya Bay
This article reports an improved independent measurement of neutrino mixing
angle at the Daya Bay Reactor Neutrino Experiment. Electron
antineutrinos were identified by inverse -decays with the emitted
neutron captured by hydrogen, yielding a data-set with principally distinct
uncertainties from that with neutrons captured by gadolinium. With the final
two of eight antineutrino detectors installed, this study used 621 days of data
including the previously reported 217-day data set with six detectors. The
dominant statistical uncertainty was reduced by 49%. Intensive studies of the
cosmogenic muon-induced Li and fast neutron backgrounds and the
neutron-capture energy selection efficiency, resulted in a reduction of the
systematic uncertainty by 26%. The deficit in the detected number of
antineutrinos at the far detectors relative to the expected number based on the
near detectors yielded in the
three-neutrino-oscillation framework. The combination of this result with the
gadolinium-capture result is also reported.Comment: 26 pages, 23 figure
A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay
We report a new measurement of electron antineutrino disappearance using the
fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight
antineutrino detectors were installed in the summer of 2012. Including the 404
days of data collected from October 2012 to November 2013 resulted in a total
exposure of 6.910 GW-ton-days, a 3.6 times increase over
our previous results. Improvements in energy calibration limited variations
between detectors to 0.2%. Removal of six Am-C radioactive
calibration sources reduced the background by a factor of two for the detectors
in the experimental hall furthest from the reactors. Direct prediction of the
antineutrino signal in the far detectors based on the measurements in the near
detectors explicitly minimized the dependence of the measurement on models of
reactor antineutrino emission. The uncertainties in our estimates of
and were halved as a result of these
improvements. Analysis of the relative antineutrino rates and energy spectra
between detectors gave and eV in the three-neutrino
framework.Comment: Updated to match final published versio
- …