13 research outputs found

    Poly I: C-activated dendritic cells that were generated in CellGro for use in cancer immunotherapy trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For clinical applications, dendritic cells (DCs) need to be generated using GMP-approved reagents. In this study, we tested the characteristics of DCs generated in two clinical grade culture media and activated by three maturation stimuli, Poly I: C, LPS and the mixture of proinflammatory cytokines in order to identify the optimal combination of culture media and activation stimulus for the clinical use.</p> <p>Method</p> <p>We tested DCs generation using two GMP-certified culture media, CellGro and RPMI+5% human AB serum and evaluated DCs morphology, viability and capapability to mature. We tested three maturation stimuli, PolyI:C, LPS and the mixture of proinflammatory cytokines consisting of IL-1, IL-6, TNF and prostaglandin E2. We evaluated the capacity of activated DCs to induce antigen-specific T cells and regulatory T lymphocytes.</p> <p>Results</p> <p>Cell culture in CellGro resulted in a higher yield of immature DCs resulting from increased number of adherent monocytes. DCs that were generated in CellGro and activated using Poly I:C were the most efficient in expanding antigen-specific T cells compared to the DCs that were generated in other media and activated using LPS or the cocktail of proinflammatory cytokines. A comparison of all tested combinations revealed that DCs that were generated in CellGro and activated using Poly I:C induced low numbers of regulatory T cells.</p> <p>Conclusion</p> <p>In this study, we identified monocyte-derived DCs that were generated in CellGro and activated using Poly I:C as the most potent clinical-grade DCs for the induction of antigen-specific T cells.</p

    Dendritic Cell Immunotherapy for Ovarian Cancer: An Overview of Our Achievements

    No full text
    Epithelial ovarian carcinoma (EOC) is the fifth leading cause of cancer-related death in women, largely reflecting the early dissemination of this malignant disease to the peritoneum. Due to its immunological features, EOC has poor response to immune checkpoint inhibitors (ICIs), including a limited tumor mutational burden (TMB), poor infiltration by immune cells, and active immunosuppression. Thus, novel strategies are needed to overcome the frequent lack of pre-existing immunity in patients with EOC. We developed and tested an autologous dendritic cell (DC)-based vaccine (DCVAC), which has recently been shown to be safe and to significantly improve progression-free survival (PFS) in two independent randomized phase II clinical trials enrolling patients with EOC (SOV01, NCT02107937; SOV02, NCT02107950). In addition, our exploratory data analyses suggest that the clinical benefits of the DCVAC were more pronounced in patients with EOC with lower-than-median TMBs and reduced CD8+ T cell infiltration. Thus, the DC-based vaccine stands out as a promising clinical tool to jumpstart anticancer immunity in patients with immunologically “cold” EOC. Our findings underscore the need for personalized immunotherapy and the clinical relevance of potential tumor-related biomarkers within the immunotherapy field. Additional clinical trials are needed to address these strategies as well as the potential value of the TMB and immune infiltration at baseline as biomarkers for guiding the clinical management of EOC
    corecore